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ABSTRACT

LieGroups. jl is a Julia package that provides an interface to
define Lie groups as well as the corresponding Lie algebra and Lie
group actions. The package also offers a well-documented, perfor-
mant, and well-tested library of such objects, with a focus on nu-
merical computations in engineering.

This paper presents the main features of the interfaces and how
that is integrated within the JuliaManifolds ecosystem. We
further present an overview on existing Lie groups implemented in
LieGroups. j1 as well as how to get started to use the package
in practice.
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1. Introduction

In many situations, one encounters data that does not reside in a
vector space. We can hence not use standard linear algebra tools
to work with such data. For example in robotics, the configuration
space of a rigid body in three-dimensional space is given by the
special Euclidean group SE(3), consisting of all translations and
rotations. A subset of these is the space of rotations, given by the
special orthogonal group SO(3), or more generally SO(n) in n-
dimensional space.

These are examples of Lie groups, formally defined as a smooth
manifold equipped with a group structure. They have applications
in physics, robotics, stochastic processes, information geometry,
and many other areas see [6, 7], but are also interesting from their
mathematical viewpoint [12] and their numerical aspects, for ex-
ample when solving differential equations on Lie groups [13, 15].
The package LieGroups.jl' provides an easy access to both
defining and using Lie groups within the Julia programming lan-
guage [4] by defining an interface of Lie groups, as well as imple-
menting a library of Lie groups, that can directly be used.

This paper provides an overview of the main features of
LieGroups. j1, whose logo is shown on the right, as of version
0.1.9. After introducing some mathematical background in Sec-
tion 2, we present the interface in Section 3 for the Lie group,
the Lie algebra, and group actions. Section 4 provides an overview
of all currently implemented Lie groups. Finally, in Section 5, we
demonstrate how to get started and use LieGroups. j1.

L Available at juliamanifolds.github.io/LieGroups.jl/stable/, see also the
zenodo archive [1].

Logo of LieGroups. jl.

Statement of Need

Several software packages for solving problems involving Lie
groups exist, especially in the context of robotics and when solv-
ing differential equations or working with statistics on Lie groups.
These then often contain Lie groups as a part or sub-module. Simi-
lar to the standalone packages like Lie++ [11], Sophus [16] in C++
or jaxlie [17] in Python/JAX or manif [8], these mainly focus on
a small set of Lie groups, mostly SO(n) and SE(n) forn = 2,3,
sometimes also including simple product groups or the Gallilean
group.

Two approaches that are a bit broader are the Lie groups defined
within DiffMan [10] in MATLAB to solve differential equations
on manifolds, and the Lie group implementations within the Python
package geomstats [14], though they are a bit hard to explore within
the documentation, since they are not distinguished from geometry
interfaces, manifolds or metrics.

Formerly, the Julia package Manifolds.jl [2] contained some
group operations, extending a few manifolds to Lie groups as well;
the interface however ended up being too close to Riemannian fea-
tures.

LieGroups. j1 addresses this gap by providing both a flexible in-
terface for defining new Lie groups and a comprehensive library
of implementations, fully integrated within the JuliaManifolds
ecosystem.

2. Mathematical Background

The following notation and definitions follow the text books [12],
especially Chapters 2 and 9 therein. For more details on Rieman-
nian manifolds, see also [9] or [5], especially Chapter 8 therein.

2.1 Lie groups

We denote a Lie group by G = (M, -) where M is a smooth man-
ifold and - is the group operation. We call n the dimension of the
manifold M, denoted by dim(,M) = n. A manifold M is a topo-
logical space that locally looks like an Euclidean space R™ for some
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n € N, but globally may have a different topology. We further re-
quire M to be second-countable and Hausdorff, see [5, Sec. 8.2]
for details.

That a manifold locally looks like R™ means that there exist a col-
lection of charts ¢;: U; — V; C R"™ for open sets U; C M and
Vi € R™ such that the union of all U; covers M. Such a collection
is called an atlas A. If for any two charts ¢;, ¢, the transition map
wj ot (U NU;) — ¢;(U; N U;) is smooth, then the atlas
A is called a smooth atlas and the manifold M is called a smooth
manifold. We refer to [5, Sec. 8.1] for more details on charts and
atlases.

As an example, take the 2-dimensional sphere

S?={peR®| |pl| =1},

which locally looks like R2, the corresponding charts ¢; are what
you would expect in a classical atlas, but globally it is not homeo-
morphic to R?.

Finally we denote the tangent space at a point p € M by T, M.
This can be thought of as all “velocities” (direction and speed) in
which a smooth curve ¢(t) on the manifold can “pass through” the
point p = ¢(0) at time ¢ = 0. Formally these velocities can be
obtained by looking at the curve “through a chart” ¢ € A and con-
sider the derivative of ¢ o ¢c: R — R™. Since we consider smooth
manifolds, this derivative can be defined independent of the chosen
chart due to the smoothness of the transition maps. Finally, the set
of all “velocities” is set the equivalence classes of derivatives of
these smooth curves [5, Sec. 8.4]. Each such tangent space T, M
is a n-dimensional vector space. We call the disjoint union of all
tangent spaces

TM= UpeMTpM

the tangent bundle of M. For the example of the 2-dimensional
sphere S2, the tangent space at a point p € S? is given by all vec-
tors in R? that are orthogonal to p, or in other words the plane that
is tangent to the sphere at p.

A group operation -: G X G — G is a function that satisfies
the group axioms: associativity, existence of an identity element
e € G, and existence of inverses g~* € G for all ¢ € G. Fur-
thermore the group operation - (on G x G) and the inversion map
t: G — G, g~ g~ ! have to be smooth maps. As an example, con-
sider the special orthogonal group SO(n), consisting of all n X n
orthogonal matrices, with determinant 1, that is, for p € SO(n),
we have pTp = I and det(p) = 1 together with the group opera-
tion - given by matrix multiplication. For n = 2 these are rotations
in the plane, hence each operation can be identified with an angle
a € [—m,m)?, or, continuously, with the circle. The identity ele-
ment is given by the identity matrix I (or the angle o = 0) and the
inverse of a rotation matrix is given by its transpose pT (or an angle
—a when a # —m and —7 otherwise).

2.2 The Lie algebra

The tangent space at the identity element e € G, denoted by
g = T.G, plays a special role and is called the Lie algebra g of the
Lie group G. The reason is that to represent arbitrary tangent vec-
tors X € T,G ata point g € G we can use the group operation: we
denote by Ay(h) = g - h the left multiplication with g, h € G. For
amap f: G — H between two Lie groups, its differential (or push
forward) at a point g € G is a linear map D f(g): T,G — Ty H
between the corresponding tangent spaces. Using the differential

2Note that the identification is not continuous.
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DXy(h): ThG — T4, G, we can generate a so-called left-invariant
vector field defined by X'(g) := D), (e)[X] which is uniquely de-
termined by the choice of X € g°. Hence we can identify tangent
vectors X (g) € T,G at arbitrary points g € G with X from the Lie
algebra g.

As a first example, consider G = (R™, +), where the tangent space
at any point g is again R"”, especially at the identity e = 0. We
further have Ay(h) = g + h and hence DA, (h)[X] = X for all
g,h, X € R™. Here, a tangent vector X induces the constant vector
field X (g) = X forall g € R".

As a second example, consider again the special orthogonal group
SO(n). The tangent space at the identity element e = I is given
by the Lie algebra so(n) = T7.S0(n) = {X € R | X =
—XT} that consists of all skew-symmetric n x n matrices. For
g,h € SO(n) and X € so(n) we have \;(h) = g - h and hence
DX, (h)[X] = g - X. Here, the tangent vector X € so(n) in-
duces the left-invariant vector field X(g) = g - X € T,SO(n),
g € SO(n). In other words, this formulation allows to represent
tangent vectors Y € T,SO(n) also using X = g~ 'Y € g.

An important tool to “move around” on the Lie group is the expo-
nential. The (Lie group) exponential (function) exp: g — G maps
elements from the Lie algebra to the Lie group, and is formally de-
fined [12, Def. 9.2.2] by evaluating the unique curve v: R — G
that fulfils the differential equation

7(8) = DAy (€)[X]

at time t = 1, that is exp(X) = ~(1). This can be interpreted
as starting at the identity element e € G and following the curve
whose velocity at each point is given by the left-invariant vector
field induced by X € g for one time unit.

For (R™, +) the exponential is given by exp(X) = X, X € R"
and for SO(n) it is given by the matrix exponential exp(X) = e*
for all X € so(n). Additionally for the unit circle in the complex
plane, using the group operation of multiplication, the exponential
function is given by the complex exponential exp(X) = e'* for
all X € R.

From the interpretation of the exponential function to follow a
curve starting at the identity, we can define the (Lie group) expo-
nential map to “start from an arbitrary point” g € G by exp,: g —
G, exp,(X) = g-exp(X) forall X € g.

Concerning a metric on the tangent spaces, smooth manifolds are
turned into Riemannian manifolds when they are equipped with
a Riemannian metric (-, -),: T, M x T, M — R for each point
p € M that smoothly varies with p. For Lie groups, we can use a
single inner product (-, -) on the Lie algebra g and use the change
in representation as mentioned above to define

with  v(0) =eandv(0) = X

(X,Y)g = (DAg-1(9)[X], DAg-1(9)[Y])e

for all X,Y € T,G and g € G. Representing tangent vectors at
arbitrary points g € G using the Lie algebra g yields here, that
we can use the single inner product directly to evaluate this Rie-
mannian metric. Hence representing tangent vectors using the Lie
algebra is the default in the following.

For the two examples above we obtain the Euclidean inner product
(X,Y) = XTY for X,Y € R" for (R",+) and the Frobenius
inner product (X,Y) = trace(XTY), X,Y € so(n) can be used
for SO(n).

3 Analogously, one can use the right multiplication pg(h) = h - g and its
differential Dpgy(e) to define right-invariant vector fields. LieGroups. j1
uses left-invariant vector fields as default.
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Note that a Riemannian metric can also be used to define an expo-
nential map using the Levi-Civita affine connection. This exponen-
tial map often differs from the Lie group exponential, in particular
many Lie groups, such as the special Euclidean group in two or
more dimensions, can not have a metric compatible with the Lie
group exponential.

2.3 Group Actions

A group action of a Lie group G on a smooth manifold M is a
smooth map o: G Xx M — M such that for all g,h € G and
p € M itholds that o(e,p) = pand o(g,0(h,p)) = o(g - h,p).*
Informally a group action describes how elements of the Lie group
G “act on” points on the manifold M. As an example, think of
the special orthogonal group SO(3) acting on points on Euclidean
space R® “moving” them somewhere by rotating them around
the origin. We obtain the group action o: SO(3) x R® — R3,
o(R,x) = Rx.

The same action can also be applied to points from the sphere
S?, resulting in a similar group action o: SO(3) x §? — §?,
o(R,p) := Rp.

3. The interface

Since a Lie group G consists of two main components, the smooth
manifold M and the group operation -, we can reuse existing
functionality from the existing interface for manifolds provided
by ManifoldsBase. j1, and later concrete manifolds provided by
Manifolds.jl [2]. This is done in a transparent way, i.e. the
AbstractLieGroup itself is a subtype of AbstractManifold
from ManifoldsBase. j1 and can hence also be used in all ex-
isting places, as for example optimization on manifolds provided
by Manopt. j1 [3]. In notation, we use typewriter font to denote
functions in the interface, but we keep the same letters of notation
as before, i.e. G for a Lie group is G in code, a point g € G is g in
code, and so on, just that for the Lie algebra we use g in both text
and code.

The interface follows the philosophy of ManifoldsBase. j1, that
the Lie group or algebra is the first argument and even a mu-
tated argument comes second. Similarly, if a function computes
something like a new point on the Lie group or a tangent vector,
there also exists a variant, that computes this in-place. For exam-
ple identity_element (G) returns the identity element e of a Lie
group G in a default representation, identity_element! (G, e)
writes the result into the pre-allocated variable e, which can also
be used with other representation types. To generate the iden-
tity in a specific representation by objects of type T, one can use
identity_element (G, T). For example, a points on the special
Euclidean group SE(n) can be represented either as a (n + 1) X
(n+ 1) matrix or a ArrayPartition with rotation and translation
stored separately.

3.1 Lie groups

The main type for Lie Groups is the
LieGroup{F, 0, M} <: AbstractLieGroup{F, 0, M},
which contains a manifold M <: AbstractManifold{[F} as well
as the group operation 0 <: AbstractGroupOperation, where
F is the set of scalars used in the representation of the manifold,
usually F = R and in some cases I is the field of complex numbers
C or the ring of quaternions H.

4This is the convention for left actions. Alternatively, right actions fulfil
o(g,o(h,p)) =o(h-g,p).
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In general, when a function within the interfaces of
JuliaManifolds returns a point, a tangent vector or any
other mutable object, there always exist two variants of the
function, one that allocates a new object and returns it, and one that
takes an additional argument to write the result into. For example
for a function £(G, g) that returns a point on the Lie group G,
there also exists a variant £! (G, h, g) that computes the result
in-place of h, possibly using the memory also for interims results.
All methods are written such that the result is correct even if
arguments h and g use the same memory. By default the allocating
variant is implemented by allocating memory accordingly and
calling the in-place variant. This default can be overridden, for
example for performance reasons.

Topological functions. Points and tangent vectors can be repre-
sented by the same Julia objects, although they are distinct from
a topological viewpoint.> Separate types are necessary when one
Lie group has different representations of points, that have to be
distinguished. When there are different representations, it is recom-
mended to introduce a point type for each representation and make
the default one fall back to (just) using arrays. Several functions in
the interface return points or tangent vectors, where the type might
not be known from the input argument. For such a function, for ex-
ample again a function £ (G) a positional argument T can be used
to specify the desired return type, i.e. £(G, T) returns a point or
tangent vector of type T. The in-place variant does not require this,
since in its signature of the form £! (G, g::T) the type T is known
from the argument g.

Alternatively to points, the same group structure can be defined
over different topological manifolds. This is for example the case
for the circle group S', which can be represented as angles, points
on the unit circle in R? or as complex numbers with unit norm,
all three of which are different manifolds to be used internally. To
access the underlying manifold, the function base_manifold(G)
is provided.

The following functions are available and pass directly to
the underlying manifold interface from ManifoldsBase.jl:
is_approx(G, g, h) to check for (approximate) equality of
two points, is_point(G, g; error=:none) to check if a point
is a valid point on the manifold, where the keyword can be
used to throw an :error, a :warn or an :info. Similarly
manifold_dimension(G) to get the dimension of the manifold,
project(G, q), to project a point onto the manifold, as well as
rand(G) and rand(rng, G) to sample a random point from the
manifold using a random number generator rng also pass directly
on to the manifold. To access the underlying manifold of the Lie
group one can use base_manifold(G).

Group operation related functions. For the group operation - of a
Lie group G, the abstract supertype AbstractGroupOperation is
mandatory. There are two main group operation types provided in
LieGroups. j1. On the one hand operations that fall back to using
- = + or - = *, where the latter has two variants, the one where it
is Abelian (like for numbers) and where it is not (like for matrices).
On the other hand, specific meta groups like the (direct) product of
two or more groups, the case where the product is taken for just one
group, i.e. the power group, or semidirect products. The available

5LieGroups. jl introduces an abstract type AbstractLieGroupPoint
<: AbstractManifoldPoint, that is used to represent points on the Lie
group. This abstract supertype is not necessary, points can be represented
by arrays or other types as well.
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Table 1. : Group operations available in LieGroups. j1.

Group operation - comment/code

falls back to +

falls back to *

falls back to *
PowerLieGroup
product Lie groups
semidirect products

AdditionGroupOperation
AbelianMultiplicationGroupOperation
MatrixMultiplicationGroupOperation
PowerGroupOperation{Op}
ProductGroupOperation{Ops}
SemidirectProductGroupOperation

group operation types are summarized in Table 1. More on these
meta groups is explained in Subsection 4.1.

For all these group operations, the following functions have default
implementations. They might not be the most performant ones for
every case, but provide working implementations out-of-the-box. It
is always possible to override these by defining a new group opera-
tion type and implementing the following functions for a LieGroup
with that new group operation type.

The identity element can be represented as a value of a spe-
cial type, e = Identity(G) or Identity(op) where op is the
group operation of G. This allows for dispatching on the type
when defining functions and avoiding unnecessary allocations. If
the actual value is needed, one can call identity_element (G)
or identity_element (G, typeof(g)), where g is an element
of the group. The first variant will always generate a point in the
default representation of the group, while the latter will generate a
point in the same representation as g.

The two central functions are compose (G, g, h) to compute the
group operation g - h for two points g,h € G and the inverse
inv(G, g) which computes g~! for a point g € G. Another func-
tionis cy(h) = g- h- g~ ! called conjugation, which is available as
conjugate (G, g, h).

For these three functions, also the differentials are available: adding
adiff_ prefix to the function name and a final argument for the Lie
algebra tangent vector, for compose additionally the argument with
which to differentiate to, i.e. diff_left_compose(G, g, h, X)
and diff_right_compose(G, g, h, X), respectively.

Finally, there is a specific function for the differential of the con-
jugate at the identity h = e, called adjoint (G, g, X), as well
as the combinations inv_left_compose(G, g, h) for comput-
ing g7! - h and inv_right_compose(G, g, h) for computing
g - h=!. All three fall back to the previously defined functions, but
provide an interface to possibly implement more efficient variants
in case such exist.

Exponential and logarithm. In LieGroups. j1, the group expo-
nential function is given by exp(G, X).If we want to “start walk-
ing” from another point, we can “move” (or interpret X) as being
from the tangent space at some point g and obtain by the chain
rule the exponential map exp,: g — G defined by exp,(X) =
g-exp(X).InLieGroups. j1, the exponential map is implemented
as exp(G, g, X). Note that on the underlying manifold, there is
a further exponential map, the Riemannian exponential map. This
usually differs from the Lie group exponential map. The Rieman-
nian exponential map exp(M, p, X) can be distinguished in that
the first argument is a manifold, and the tangent vector X has to be
from the tangent space at the point p on the manifold. Here, again,
to access the Riemannian exponential, one can use the base man-
ifold of the Lie group, i.e. exp(base_manifold(G), g, X) and
have to make sure that X is from the tangent space at g.

Locally around the identity element e € G, the exponential map is
a diffeomorphism, i.e. there exists an inverse map on some neigh-
bourhood of e. The logarithmic function log: G — g and logarith-
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mic map log, : G — ghave the function signatures 1og(G, g)and
log(G, h, g),respectively, with the same caveat to the Rieman-
nian logarithmic map as for the exponential.

When the exponential and logarithmic map are not known in
closed form, it might be beneficial to use retractions and inverse
retractions instead, respectively. These are first or second order ap-
proximations of the exponential and logarithmic map, respectively
and their interface is already provided in ManifoldsBase.j1°.
In LieGroups.jl, one can either implement new vari-
ants based on a subtype of AbstractRetractionMethod
and AbstractInverseRetractionMethod, resp., or
use the wrappers BaseManifoldRetraction and
BaseManifoldInverseRetraction, resp., to directly use
the retraction and inverse retraction from the underlying manifold.

3.2 Lie algebras

Similar to points on the Lie group, when representing elements
X € g from a Lie algebra, we do not type the general functions
of the interface. This allows to use either plain arrays or own struc-
tures to represent these in code’. Keep in mind, that the Lie algebra
is a vector space, so that addition, subtraction and scalar multiplica-
tion, as well as their broadcasted variants, are assumed to be defined
in case you use an individual data type.

A major difference to the usual representation of tangent vectors
on the underlying manifold is, that here the usual representation is
done in the Lie algebra.

A central function on the Lie algebra is the Lie bracket [-,-]: g x
g — g, which is available as 1ie_bracket (g, X, Y). For more
details on the Lie bracket see [12, Ch. 5].

Topological basics. Given a Lie group G, we obtain the Lie algebra
by calling g = LieAlgebra(G). To access the Lie group again, use
base_lie_group(g). Similarly base_manifold(g) returns the
underlying manifold of the Lie group.

As atechnical detail, the Lie algebra is modelled as a tangent space®
using the already mentioned Identity(G) as base point. A zero
vector is generated via zero_vector (g) for the default represen-
tation and zero_vector (g, T) for a specific representation type
T.

The main topological function is to test the validity of a tan-
gent vector is_vector(g, X; error=:none) using the same
error= keyword as is_point on the Lie group.

Vector space related functions. For the following functions related
to vector space features, using the Lie algebra g as first argument
is equivalent to specifying the Lie Group GG and an arbitrary point
g € G. This yields that the Lie group complies with the general
interface for manifolds.

The inner product and norm on the Lie algebra are available
as inner(g, X, Y) and norm(g, X), respectively. Furthermore,
there are two functions to convert between a coordinate-free repre-
sentation of X as a tangent vector and its representation in coordi-
nates of a basis.

Given a vector ¢ € RI™©) we obtain the correspond-
ing tangent vector by calling get_vector(g, c, B)
where B is a basis of the tangent space, i.e. a subtype
of AbstractBasis and defaults within LieGroups.jl to

6see juliamanifolds.github.io/ManifoldsBase.jl/stable/retractions/.

"The optional abstract supertype AbstractLieAlgebraTangentVector,
which is a AbstractTangentVector, is provided to also distinguish dif-
ferent representations here.

8see the documentation of ManifoldsBase. TangentSpace
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Table 2. : Group actions types available in LieGroups. j1.

Group action type comment/code

falls back to +

of a group action type A
requires M = G

falls back to *

requires M = G

AdditionGroupAction
ColumnwiseGroupAction{A}
(Inverse)LeftGroupOperationAction
LeftMultiplicationAction
(Inverse)RightGroupOperationAction
RotationAroundAxisAction

RowwiseGroupAction{A} of a group action type A

DefaultLieAlgebraOrthogonalBasis(). When a Lie group
has different representations of points and tangent vectors, these
are distinguished by calling get_vector(g, c, B, T) speci-
fying the tangent vector type. Given a tangent vector X € g, we
obtain its coordinates by calling get_coordinates(g, X, B),
where the basis is again optional.

For the case of the default, the
DefaultLieAlgebraOrthogonalBasis() the more com-
monly used names hat (g, c) (again with an optional vector type
T) and vee (g, X) are implemented

Push forward and pull back of tangent vectors. To get a tangent
vector X, € T,G at point g € G from its Lie algebra repre-
sentation X € g we have to use the push forward of the left
multiplication with g, i.e. DAy(e)[X]. This is implemented as
push_forward_tangent (G, g, X). Conversely, to represent a
tangent vector Y € T,G back in the Lie algebra g, we have to use
the pull back of the left multiplication with g7*, i.e. DA -1 (g)[Y].
This is implemented as pull_back_tangent (G, g, Y).

Jacobians. On a Euclidean space, the terms differential and Jaco-
bian are often used interchangeably. Within differential geometry,
the differential (or push forward) of a smooth map f: M — A be-
tween two manifolds is a map between the corresponding tangent
spaces. We denote it by D f(p) : T,M — Ty, N, where p € M.
The differential is a linear map between the tangent spaces. How-
ever, in the coordinate-free representation of tangent vectors, no
matrix representation of this linear map is constructed. But as soon
as we choose bases for the tangent spaces and we represent tangent
vectors in coordinates (cf. get_coordinates previously), we can
represent the differential as a matrix, called the Jacobian matrix.
Currently for both exp as well as conjugate, the Jacobian is im-
plemented. Note that for exp, the domain is the Lie algebra. Since
that is a vector space, its tangent space(s) can be identified with the
Lie algebra again. Hence both Jacobians are maps from the Lie al-
gebra to itself. The signatures are jacobian_exp(G, p, X, B)
and jacobian_conjugate(G, g, X, B), where B is again the
basis to represent the tangent vectors in coordinates and defaults to
DefaultLieAlgebraOrthogonalBasis().

3.3 Group actions

Group actions as defined in Subsection 2.3 are implemented
as a struct GroupAction{G, M, A} <: AbstractGroupAction
containing the Lie group G <: AbstractLieGroup, the manifold
M, and a group action tpe A in order to distinguish possible differ-
ent ways a group could act on a manifold. Table 2 summarizes the
currently available group action types in LieGroups. j1.

The main functions then are apply(a::GroupAction, g, p)
to compute o(g,p) for a group action a, where
g € G and p € M, as well as its differential
diff_apply(a::GroupAction, g, p, X) to com-
pute Dyo(g,p)[X] for a tangent vector X € T,M
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Table 3. : Implemented Lie groups in LieGroups. j1 version 0.1.9.

Lie Group G Symbol comment/code
CircleGroup() st 3 representations
GeneralLinearGroup(n, F) GL(n,F) F € {R,C}
HeisenbergGroup (n) H(n
OrthogonalGroup (n) O(n)
PowerLieGroup(G, n) gnr G n
ProductLieGroup(G1l, G2,...) Gy xGax... GLXG2X...
Semidirect product group g1 X Go G1 x G2

gl X g2 Gl x G2
SpecialEuclideanGroup(n) SE(n)
SpecialGalileanGroup(n) SGal(n)
SpecialLinearGroup(n, F) SL(n,F) F e {R,C}
SpecialOrthogonalGroup (n) SO(n)
SpecialUnitaryGroup(n) SU(n)
SymplecticGroup(n) Sp(2n)
TranslationGroup(n; field=F) (F",+) F € {R,C,H}
UnitaryGroup(n, F) U(n) F e {C,H}

ValidationLieGroup(G) wraps G for numerical verification

with respect to the manifold argument as well as
diff_group_apply(a::GroupAction, g, p, Y) to com-
pute Dgo(g,p)[Y] for a Lie algebra element Y € g.

Due to the property that o(¢g!,0(g,p)) = p forall g € G and
p € M, there is also an inverse group action available 01 (g, p) =
o(g~t, p), which can be obtained by calling inv(a).

Note that while the group action o(g,o(h,p)) = o(g - h,p) “ap-
pends” a new action (w.r.t. g) on the left, for the inverse we have

o Hg,0 H(h,p) =0olgt b7t p) =o((h-9) " p)
=0o '(h-g,p)
for all g,h € G. This is a so-called right action. Similarly for a

right group action the inverse is a left group action. This is taken
into account when using apply.

4. Implemented Lie groups

Table 3 summarizes the currently implemented Lie groups in
LieGroups.jl10.1.9.

4.1 Meta Lie groups

There are three Lie groups that are built upon other Lie groups.
We mention them here briefly and point out specific functions and
features that are additionally available for these.

Product Lie group. Given two Lie groups G = (M, *) and H =
(N, ©), their (direct) product G x H is again a Lie group (M x N, -)
with group operation defined component-wise, i.e.

(g1,h1) - (g2, ha) = (g1 * g2, by © ha)

for g1,9o0 € G and hy,hy € H. Since x is a binary opera-
tor in Julia, given two Lie Groups G,H, their product Lie group
can be constructed via G X H. The same applies for more than two
groups, i.e. you can construct arbitrary long product Lie groups
GIXG2XG3X....

As for the representation of points and tangent vectors, the default
representation requires to load RecursiveArrayTools. j1°.

9see docs.sciml.ai/RecursiveArray Tools/stable/
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The binary operator X automatically flattens the in-
put, so that the points are represented by non-nested
ArrayPartition objects. If you want to construct prod-
ucts of Lie groups where points are represented by nested
ArrayPartition objects, for example (G1 X Ga) X Gs, use
ProductLieGroup (ProductLieGroup(Gl, G2), G3) instead.

Power Lie groups. Mathematically power groups are product Lie
groups where all manifolds are the same. Computationally we can
sometimes benefit by exploiting this special structure. Therefore
the PowerManifold(G, nl, n2, ...) is provided to construct
the n; X ng x ...-fold Cartesian product of the Lie group G with
itself. As a shortcut, you can use G™n to construct the n-fold Carte-
sian product of the Lie group G with itself.

Note that inheriting from the power manifold, there are two
different data types to represent data, per default a sin-
gle large array. Alternatively, one can use the constructor
PowerLieGroup(G, NestedPowerRepresentation(), n) to
use the other representation of points and tangent vectors, namely
as a vector of points/tangent vectors.

To abstract the access of elements here, similar to the
PowerManifold in ManifoldsBase.jl, the access functions
glG, 1] are available.

Semidirect product Lie groups. Given two Lie groups G = (M, %)
and H = (N, ©) as well as a group action o: G X H — H, the (left)
semidirect product Lie Group G x H = (M x N, -) is defined via
the group operation given by

(g1,h1) - (g2, ha) = (g1 * g2, h1 0 0(g1, h2))

This semidirect product Lie group is constructed calling
LeftSemidirectProductLieGroup(G, H, a), where the
GroupAction a is optional, since one can define a default action
by setting default_left_action(G, H). With this default,
also the shortcut G X H is available. Similarly, the right semidirect
product Lie Group H x G is defined analogously with the positions
of the groups are swapped in the group operation and the default
for the group action is given by default_right_action(G, H).
This can be constructed via H % G then as well.

4.2 Decorators for Lie groups

The decorator pattern is used within the JuliaManifolds ecosys-
tem to add or modify existing functionality. For Lie groups there are
currently two such decorators available: one for adding a custom
metric structure (inner product) to the group and one for numerical
validation.

Specifying a different inner product. By implementing
inner(g, X, Y) and norm(g, X) for a Lie algebra
g = LieAlgebra(G), the Lie group G is equipped with a
certain inner product on the Lie algebra and hence on all tangent
spaces to the Lie group. This is an implicit choice of a default
metric on the Lie group, that is considered the default thereafter.

If more than one metric is used in applications, a second metric can
be introduced by wrapping the Lie group into a MetricLieGroup,
i.e. G2 = MetricLieGroup(G, m::M), where M has to be a sub-
type of AbstractMetric available from Manifolds.j1'". All
functions unrelated to the metric are forwarded from G2 to G, while
all functions related to the inner product have to be specified for G2
anew.

10where analogously a manifold of type MetricManifold is defined.

8(79), 2026

Adding  numerical  validation to a Lie group. The
ValidationLieGroup is a special Lie group that is intended for
numerical verification and debugging of code using Lie groups.
The ValidationLieGroup is implemented as a wrapper around
any existing Lie group, G2 = ValidationLieGroup(G). It pro-
vides additional functionality to check the correctness of com-
putations involving the Lie group. Most prominently, all in-
put and output of group functions are checked for validity,
e.g. by calling is_point and is_vector on all points and
tangent vectors, respectively. Similarly, the inner manifold is
wrapped into the similar decorator from ManifoldsBase. j1, the
ValidationManifold. While by default failures in these checks
result in errors, this can be changed by setting the error= key-
word of the ValidationLieGroup constructor to either :warn or
:info.

4.3 Concrete Lie groups

From the list of available Lie groups in Table 3, we want to high-
light some specific features of a few of them.

For the CircleGroup (), three different representations of points
are available: as angles in [—, ), as complex numbers with unit
norm, and as points on the unit circle in R2. These are constructed
by specifying the representation of points, i.e. CircleGroup(R),
CircleGroup(C), and CircleGroup(R?), respectively. Note
that each of these representations uses a different underlying man-
ifold, namely Circle(R), Circle(C), and Sphere(1), respec-
tively. This is a case, where it is not only the representation of points
and tangent vectors that differ, but indeed even the underlying man-
ifold.

The special Euclidean group G = SE(n), there are three different
representations available:

The first one is the matrix representation, where points are rep-
resented as (n + 1) X (n + 1) matrices combining rotation and

translation, i.e. as
(Rt
g - 0 1 I

where R € SO(n) and t € R™.

The second representation is the tuple representation, where points
are represented as tuples ¢’ = (R, t) and the third is the tuple rep-
resentation with the translation in the first component, i.e. ¢’ =
(t, R). These two are available when RecursiveArrayTools. j1
is loaded and specifying the variant=:left (default) or
variant=:right, respectively. The matrix representation works
on either variant.

For all three representations, one can access the component seman-
tically by writing g[G, :Rotation] and g[G, :Translation],
which works independent of the representation used.

5. [Examples how to use LieGroups. jl

In this section, we provide examples of how to use the
LieGroups. j1 package in Julia.

5.1 A Beziér curve on a Lie group

In the first example we illustrate how to construct and plot a Beziér
curve on a Lie group, here the special Euclidean group SE(2).

We first can generalize the de-Casteljau algorithm for Beziér curves
to Lie groups by replacing the linear interpolation step with using
the exponential and logarithmic map.
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Code 1: de-Casteljau algorithm on a Lie group.

using LieGroups, ManifoldsBase, RecursiveArrayTools

using CairoMakie
W

deCasteljaulLieGroup (G, cp, t)

Evaluate the Beziér curve at parameter "t  given a
vector of control points “cp” on the Lie group ~G~

function deCasteljaulieGroup (
G::AbstractLieGroup, cp::Vector{P}, t::Real
) where {P}
n = length(cp)
points = [copy(G, g) for g in cpl
for r in 1:n-1
for i in 1:n-r
X = log(G, points[i], points[i+1])
exp! (G, points[i], points[il, t * X)
end
end
return points[1]

Code 2: Evaluating Bézier curves on SE(2) and SO(2) x 7(2).

S02 = SpecialOrthogonalGroup (2)
R2 = TranslationGroup(2)
S02xR2 = S02 X R2
ts = range(0, 1, length=35)
qt = [
deCasteljauLieGroup (S02xT2, cp, t) for t in ts
]
SE2 = SpecialEuclideanGroup (2)
q2 = [deCasteljaulLieGroup (SE2, cp, t) for t in ts]

In Code 1, we define the general de-Casteljau algorithm on a Lie
group G, given a vector of control points cp and a parameter t in
[0, 1].

We can now compare the algorithm on the Lie group SE(2)
with the corresponding Bézier curve on the (direct) product
Lie group SO(2) x T(2), where T(2) = (R?+) is the
TranslationGroup(2). Denote by R, the rotation matrix in
SO(2) for an angle « € [0, 27). We consider the control points

g2 = (R% G?g))
g5 = (R, (_21/?2)) 91 = (Rn, <é))

We evaluate the corresponding Bézier curves on both Lie groups
using the Code 2.

The resulting Bézier curves on both Lie groups are shown in Fig-
ure 1. One can see that the product Lie group works the same as
if one would have done that separately component-wise, while the
Bézier curve on SE(2) behaves differently. A main feature here is,
that due to the generic implementation on arbitrary Lie groups, we
can easily switch between different Lie groups, where the data is
still valid.
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Two Bézier curves on different Lie groups

0.6 T / T T -

—> Control points
SO(2) x T(2) | |
— SE(2)

—0.4 -

| | |
0 0.2 0.4 0.6 0.8 1

Fig. 1: Bézier curves on the Lie groups SE(2) (teal) and SO(2) x R? (sand)
based on the same control points g1, .. ., g4 (blue).

5.2 Simulating a charged rod in a static electric field

Physical systems can often be described by ordinary differential
equations on Lie groups. For example, the state of a charged metal
rod moving on a plane can be specified by its position, orientation,
linear velocity, and angular velocity. Such state naturally belongs
to a Lie group: a direct product of G; = SO(2) x R? and its Lie
algebra, g;, denoted G = G; x g;. The ordinary differential equa-
tion governing the dynamics of the system can be derived from the
electrostatic approximation, in particular the Coulomb’s law. Elec-
tric point charges ¢;,7 € 1,..., N at positions R; generate a static
electric field E(p) at every point p in the plane. The force and the
moment of force affecting the rod of length L, mass M, moment
of inertia I, linear charge density A, with the center at position
p, orientation €, and where v is the direction along the rod can be
expressed as the following two second order ODEs

L/2
Mp =X\ E(p+ su)ds,
~L/2

) L/2
I0 = / Asu, - E(p + su)ds,
~L/2

where u, is the vector perpendicular to w. The pair g = (p,0)

represents a point on G;, while ¢ = (p, 6) is an element of the Lie
algebra g;. This second order ODE on G; can be converted to a
first order ODE on G = G; X g; by introducing (p, #) as additional
state variables.

The overall ODE has the form

()= ()

where ¢ € Gy and f(g,g,t) is derived from the above equa-
tions. We further require initial conditions for both g and ¢ at time
to = 0. Then this can be solved using Lie group methods, such
as the Runge-Kutta-Munthe-Kaas (RKMK) variant [15] of Heun’s
method [13, App. A.1].

Code 3 shows functions that calculate the right hand side of the
ODE, where E_field is a function that calculates electric field
strength from the point charges at the given point. The function
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Code 3: Dynamics of a rod affected by point charges.

function force_and_torque (

sp::SystemParameters, FO, r

)

u, u, =eachrow (FH)

F, 7 =zeros(2), 0.0

for s in range(-sp.L/2, sp.L/2; length=Nq)
E = E_field(sp, r .+ s .* u)
F .+= sp.X *E *x (sp.L/(Ng-1))
T +=sp.X\ *s * dot(u;, E) x(sp.L/(Ng-1))

end
return F, 7T
end
# £((p,0), (dp,df), t) where (p,0) and (dp,df) are

# passed as the first argument, system parameters
# as the second one and time as the last one
function dynamics(state, sp::SystemParameters, t)

p, dp = state.x
F, tau = force_and_torque(sp, p.x...)
a F ./ sp.M

c [tau / sp.Icm, a...]
ddx = hat(sp.lie_algebra, c, ArrayPartition)
return ArrayPartition(dp, ddx)

end

Code 4: Step calculation for the RKMK Heun method.

function integrator_step!(
A::GroupAction, sp::SystemParameters,
y, £, t, dt
) # The dynamics function is passed as f
Ie Identity (A.group)
F1 (dt / 2) *x f(y, sp, t)
tmp = zero_vector (A.manifold, y)
diff_group_apply! (A, tmp, Ie, y, F1)
y2 = exp(A.manifold, y, tmp)
F2 = dt * f(y2, sp, t + dt/2)
diff_group_apply! (A, tmp, Ie, y, F2)
exp! (base_manifold(A), y, y, tmp)

force_and_torque calculates the force and torque affecting the
rod, while dynamics converts them to the Lie algebra element can
be used by the solver.

The RKMK Heun method is a second order method that can solve
ordinary differential equations defined on Lie groups. A single step
of an RKMK-type Heun solver is implemented in Code 4. For our
special case the manifold is equal to the group, namely G, and
the group action is the left group operation.

The main advantage of using a Lie group solver for this problem is
that we do not have to consider parametrization of the Lie group.
The presented approach can be easily generalized to three spatial
dimensions, where parametrization of rotations on SO(3) would
be even more challenging numerically.

The presented method was applied to a case with two static charges:
1 x 1075 C at position (—1m, O0m) and —1 x 107°C at po-
sition (1m, Om). A rod of length 0.67m with charge density
1 x 107 C/m and mass 1kg started from three different initial
states:
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Trajectories of a charged rod in the electric field
generated by two point charges

27 ]
E O i
>

_9 .

X [m]

Fig. 2: Three solution curves 71 (blue), y2 (green), and 3 (purple) of a Lie
group Heun method on the product of Lie groups SO(2) x R? modelling
the movement within an electric field with two point charges located at g
(sand) and g2 (olive). The initial start points of the rods are indicated by
circles, the rods themselves have two different end markers to indicate their
orientation.

(1) position (0m, —1.5m), angle 0.l1rad, velocity (Om/s,
0m/s), angular velocity O rad/s,

(2) position (—0.2m, 1m), angle 0.2rad, velocity (—0.12m/s,
—0.15m/s), angular velocity O rad/s,

(3) position (—0.5m, —0.5m), angle 0.6rad,
(—=0.04m/s, 0.12m/s), angular velocity O rad/s.

velocity

The trajectories obtained in a simulation with time step 0.001s
are presented in Figure 2. Simulation times between 30s and
135s were chosen to have the rod remain relatively close to point
charges. Position and orientation of the rod is indicated at 20
equally spaced times, along with a densely sampled trajectory of
the center of the rod.

For more advanced methods of solving differential equations on
Manifolds and Lie groups in Julia, see ManifoldDiffEq. j1.!"
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