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ABSTRACT
BiochemicalAlgorithms.jl is framework for developing structure-
based bioinformatics applications within the Julia ecosystem. Our
library serves as a foundation providing rich functionality includ-
ing file I/O, molecular modeling, molecular mechanics methods,
and an accompanying visualization tool. BiochemicalAlgorithms.jl
is based on Biochemical Algorithms Library (BALL), the largest
open-source C++-framework of its kind. Our redesign emphasizes
three design goals: ease of use, rapid application development
(RAD), and functionality. Transitioning from C++ to Julia signifi-
cantly simplified the realization of our design.
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1. Introduction
The aim of structure-based bioinformatics is the analysis and
targeted manipulation of three-dimensional structures of biological
macromolecules such as proteins and nucleic acids. This research
field integrates disciplines ranging from fundamental physical
laws to complex biochemistry knowledge and advanced numerical
computing methodologies. For example, in molecular mechanics,
a molecular force field is used to compute the energy of a structure.
Structure-based bioinformatics encompasses applications such as
molecular modelling, molecular dynamics (MD) simulations, and
molecular docking. Molecular modelling techniques, particularly
docking suites, attracted widespread interest during the COVID-19
pandemic: In the early phase, the protein structures were predicted
based on sequence data as experimentally verified structures were
not yet available. These structures were examined, including the
analysis of the effects of the mutations originating from various
virus strains. The knowledge of these molecular functions was
then used in the context of rational drug design to find potential
vaccines or drug therapeutics [16].
The COVID-19 pandemic highlighted the importance of these
applications. However, most open-source software packages were
developed much earlier, between 1995 and 2010. For instance,
the molecular docking tools AutoDock Vina and its predecessor
AutoDock4 regained considerable popularity during the pandemic;
however, they were developed much earlier in 2009 and 2010
[28, 17].
In the last decade before the pandemic, there have been no signifi-
cant innovations in structure-based software developments. Several

reasons contribute to the decreasing interest in this field. A crucial
aspect is the availability of molecular structure data. Historically,
the number of experimentally resolved structures was limited for
many years [2] leading to a slowdown of the progress in this area.
This changed in 2018 when DeepMind entered the CASP competi-
tion with AlphaFold [26] and, hence, put structure prediction in the
spotlight again. Additionally, the number of experimentally deter-
mined structures with high resolution has increased dramatically
through advances in cryo-electron microscopy in recent years.
Nowadays, with the rapid rise of computed structures, availability
no longer restrains the development of structural bioinformatics
applications [29].

Software development in this field has been – and still is –
typically challenging due to its interdisciplinary nature. The
need for both numerical stability and computational efficiency,
along with ease of use, has been a significant obstacle to RAD
in open-source projects. Schroedinger is a closed-source frame-
work providing packages for different molecular applications:
ProteinPreparationWizard deals with the preprocessing of
protein structural models and LiveDesign focuses on docking
and designing ligands [24, 23]. These tools have the undeniable
disadvantage of being closed-source and not free of charge.
For many open-source software packages, it is not uncommon
to focus on implementing one specific task or algorithm (e.g.,
the introduction of a docking algorithm). The drawback of this
approach is, that the user has to virtually glue several tools together
providing the specific functionality. For instance, the structures
have to be properly preprocessed before they can be used as input
for a docking algorithm but these tools usually lack functionalities
for preprocessing.
An exception to this single-purpose approach is the introduction of
Biochemical Algorithms Library (BALL) by Kohlbacher et al. in
1996. BALL is a well-designed framework for molecular structure
analysis written in C++. It offers file import and export, structure
preprocessing, molecular mechanics, advanced solvation methods,
and visualization options. Because of many contributions at the
time BALL used to have one of the biggest user communities in
this field. In 2010, a new version introduced Python bindings for
enhanced usability.

A package for molecular dynamics simulation was published in
more recent times and, similar to BALL it was written in C++ and
included additional Python bindings [7]. While C++ is a natural
choice to achieve the required efficiency of programs, it effectively
hinders the rapid prototyping of molecular algorithms.
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Developing software for structural bioinformatics is still challeng-
ing; however, choosing the programming language is not. Julia of-
fers both the efficiency and numerical stability needed for molecu-
lar simulations along with rapid development capabilities. Several
packages already exist in Julia related to structural bioinformatics –
most prominently under two Github communities Molecular Sim-
ulation in Julia and BioJulia [19, 18]. The latter offers software
packages for general biology approaches such as BioSymbols.jl for
the representation of nucleic and amino acid primitive types as well
as packages related to sequential bioinformatics. Most notably, it
provides BioStructures.jl for reading and writing of macromolecu-
lar structures [10]. Additionally, Greener et al. published Molly.jl,
a package for molecular simulations, which is part of the Molecu-
lar Simulation in Julia Github community [9]. Another interesting
approach is ProtoSyn.jl; although it provides functionalities for an-
alyzing peptides, its main focus is restricted to peptide design and
engineering [22].
The mentioned Julia packages are limited to specific tasks e.g.,
BioStructures.jl is an excellent package for reading and writing
PDB files. However, there remains a need for a platform that acts
as an entry point by offering functionality encompassing an entire
molecular structure pipeline.
We present BiochemicalAlgorithms.jl as a general-purpose frame-
work for structure-based bioinformatics. BiochemicalAlgorithms.jl
is a redesign of BALL and provides the foundation for molecular
modelling and molecular simulation studies. Currently, we provide
functionalities for:

—reading common data formats such as PDB, PDBx/mmCIF, Hy-
perChem HIN, SDF (Structured Data File), and PubChem JSON

—preprocessing the input by preparing the entire system (e.g.,
adding missing hydrogens, bond computation, reconstruction of
missing atoms, . . . )

—molecular mechanics through AMBER force fields
—mapping of structures
—structure minimization
—visualization of structures with BiochemicalVisualization.jl

In addition, BiochemicalAlgorithms.jl’s intuitive interfaces enable
users to develop their custom applications like the implementation
of force fields for specific needs.

This article is organized as follows: First, we give a short back-
ground on BALL because this C++ framework motivated our de-
sign. In the next section, we depict how the switch from C++
to Julia improved our development. Thereafter, BiochemicalAlgo-
rithms.jl’s core is described. The ease of use and functionality are
showcased in the application section. It contains four use cases in-
cluding a comparison of C++ and Julia as well as visualizations.

2. BALL– Biochemical Algorithms Library
The main intention for the development of BALL as well as for Bio-
chemicalAlgorithms.jl is to generate a framework for rapid proto-
typing of molecular applications. This section summarizes the key
concepts of BALL that motivated the design of our project 1

The initial work on the BALL project started in 1996, resulting
in the C++-written library BALL and its accompanying molecu-
lar viewer, BALLView. One reason for BALL’s success lies in its

1An in-depth description of the entire BALL framework is beyond the scope
of this article. Confer the main publications [15, 11] for more details.

Fig. 1: BALL’s architecture is structured in several layers. Upon the stan-
dard libary layer are the foundation classes and ontop of them the KERNEL.
Several module extend the interface for visualization, file import and expo-
ert, molecular mechanics, solvation, structure and NMR. The C++ written
frameworkis extended by Python interface for fast scripting purposes. The
figure was taken from the official BALL documentation [1].

sophisticated design; it employs an object-oriented approach with
four design goals: ease of use, robustness, openness, and function-
ality The object-oriented approach facilitates ease of use in com-
bination with the well-documented and intuitive interfaces. As can
be seen in Figure 1, BALL’s architecture is structured in several
layers:

—The standard template library (STL) forms its base.

—The foundation classes provide general data structures such as
hash sets and mathematical objects (e.g., matrices, vectors,...).

—The core consists of the KERNEL classes that contain data struc-
tures representing molecular entities.

—The basic components represent fundamental functionalities
placed atop of this core layer; exceptions include the visualiza-
tion module that is based on Qt and Open GL [27, 14].

—Finally, the application layers can be used to develop custom
applications or leverage existing tools.

Hildebrandt et al. published an updated version in 2010, featuring
Python bindings alongside installation with the use of CMake as
build system – enhancements that improved usability and openness
while allowing easier integration with external packages across
different compilers/ operating systems [11].

BALL’s uniqueness stems from its rich functionality integrated in
a single easily extensible open-source platform. Figure 2 illustrates
how KERNEL classes form three frameworks: the general molecular
framework, the protein framework, the nucleic acid framework –
all implemented through composite patterns [8]. More precisely,
the composite class is the base class for all derived classes
representing molecular entities such as Atom, Protein, etc. or
container classes System, AtomContainer, and so on.

These frameworks form the basis for the functionalities of the
basic components ranging from preprocessing tools (file import/-
export) to complex analyses (e.g., energy minimization/mapping)
alongside advanced solvation methods. BALL is a well-tested
library ensuring robustness of the provided functionalities.

BALL’s robustness and well-designed structure has contributed sig-
nificantly to its popularity – BALL used to have one of the biggest
user communities in this field.

2



The Proceedings of the JuliaCon Conferences 7(78), 2025

Fig. 2: UML class diagram of the KERNEL classes. The KERNEL classes form
three frameworks and are implemented using the composite pattern[8]. The
figure was taken from the official BALL documentation [1].

3. BiochemicalAlgorithms.jl
In this work we sought to redesign the popular BALL package for
molecular analysis and simulation. This section examines reasons
behind this redesign followed by descriptions detailing Biochemi-
calAlgorithms.jl’s core implementations.

3.1 Reasons for a redesign: why Julia?
There remains an ongoing need in the structural bioinformatics
ecosystem in Julia for a framework offering rich functionalities
akin those provided by BALL. While the design goals are still
valid, their realization in BALL is not contemporary anymore. The
choice regarding programming language impacts implementation
of the mentioned design goals massively. From today’s perspective
in particular with regard to its purpose as a platform for RAD, the
usage of C++ may be considered suboptimal.

As for many scientific software packages, the development times
for applications play a crucial role for the acceptance and usability
of the underlying library. For instance, significant time investment
may often be required merely installing libraries alongside their
dependencies. Despite using the CMake build system since version
1.3, setting up BALL remains a highly non-trivial task.
Moreover, knowledge surrounding utilized programming lan-
guages heavily influences development times. Low-level languages
like C++ necessitate greater learning curves compared to scripting
languages such as Python [20]. Even with the additional Python
bindings, the integration of new functionality is still not straight-
forward. In contrast, the implementation of new features is typi-
cally associated with the addition of massive amounts of boiler-
plate code. This applies to an even greater extent in cases where
portability to different platforms and compiler settings have to be
supported.
Consequently, BALL itself can be considered as a textbook ex-
ample for the two language problem. In the latter, the core func-
tionality is often implemented in a low-level programming lan-
guage, ensuring performance, whereas higher-level programming
languages facilitate user-friendly interfaces towards the core func-
tionalities [5]. Julia was explicitly developed addressing these chal-
lenges [25].
Nevertheless, it is important to keep in mind that back in 1996 and
still in 2010, C++ was the best choice for the implementation ensur-
ing performance required specifically within the contexts involving
molecular mechanics applications.

Switching our development from C++ to Julia has greatly simpli-
fied conforming the design goals:

—Ease of use: BiochemicalAlgorithms.jl’s source code provides
a better readability as the boilerplate code is massively reduced
compared to BALL and the usage of C++. The integration of
documentation, basic tutorials, and test cases facilitates the in-
troduction to BiochemicalAlgorithms.jl, not to mention the triv-
ial installation via Julia’s package manager.

—Openness: Just like installations, the integration process sur-
rounding external tools to BiochemicalAlgorithms.jl is straight-
forward. Our well-documented interfaces allow nearly seamless
integration of custom applications.

—Robustness: One of the strengths of Julia is the integrated
unit testing functionality allowing to test implemented code
on the fly. BiochemicalAlgorithms.jl has been carefully devel-
oped with accompanying test cases for the core structures as
well as for the functionalities ensuring non-faulty behavior us-
ing TestItemRunner.jl[12]. Benchmark test cases are imple-
mented in order to assess performance of typical tasks with the
help of BenchmarkTools.jl and Pkgbenchmark.jl [4, 13].

—Functionality: BiochemicalAlgorithms.jl implements standard
data structures for molecular entities and already provides dif-
ferent functionalities. These includes import of structures stored
in common molecular data formats including PDB, PDBx/mm-
CIF, HyperChem HIN, SDF (Structured Data File), and Pub-
Chem JSON files. Molecular mechanics are offered through an
interface for force fields and a concrete implementation for an
AMBER force field. BiochemicalAlgorithms.jl provides algo-
rithms for structure minimization and structure mappings. The
interfaces are designed in a way that facilitates adoption, e.g.,
the implementation of custom force fields or changing an opti-
mizer for the structure minimization.

3.2 The core representation
The core representation in BiochemicalAlgorithms.jl centers
around the System data structure, which serves as the foundation
for all applications within the framework. As shown in Figure 3,
the system contains data structures for the representation of atoms,
bonds, molecules, chains, residues, nucleotides, and fragments.
These components are either generated explicitly or populated by
reading input files (see code listings 1 and 2 in the applications
section 4).

The atom representation with its position, velocity, and force
contributes substantially to the framework’s efficiency. After
initially considering DataFrames.jl [3], we opted for a custom
implementation of the Tables.jl interface [21]. The custom imple-
mentation enabled greater flexibility regarding the interface design
and improved performance in initial benchmarks.
The custom implementation maintains compatibility with
DataFrames.jl through the shared Tables.jl interface, allowing
straightforward conversion when needed. Additionally, support for
conversion to AtomsBase.jl representation is under development.
Table 1 presents a performance comparison between BALL and
BiochemicalAlgorithms.jl for processing an input structure with
892 atoms.
BiochemicalAlgorithms.jl is on par with its C++ predecessor in
most tasks, with some operations like compute_forces being
slower. It is important to keep in mind, that several years of devel-
opment have led to a highly optimized code base in BALL, while
our implementation still undergoes improvements.
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Fig. 3: UML diagram of the core of BiochemicalAlgorithms.jl. In the center resides the System interface. All other functionalities are
grouped around that core piece. Only the most important functionalities of each class are shown.

Table 1. : Comparison of time requirements of the Amber force field imple-
mentations. The input file consisted of 892 atoms and was processed on the
same system (AMP EPYC 7713 CPU, S/C/T=2/64/1).

Description BALL BiochemicalAlgorithms.jl
compute_energy 3.89 ms 4.706 ms
compute_forces 3.56 ms 33.590 ms
update 34.41 ms 89.635 ms
setup 72.04 ms 70.604 ms

4. Applications
In this section, we chose four use cases to illustrate Biochemi-
calAlgorithms.jl’s capabilities in terms of functionality and usabil-
ity, from basic operations to more advanced applications, while
highlighting the advantages of using Julia for bioinformatics tasks.
We begin with a simple example to show the creation and usage
of core structures. Next, we compare two different configurations
of the same molecule. Finally, we want to demonstrate the ele-
gance of Julia code in comparison to C++ in the context of BALL
and BiochemicalAlgorithms.jlİn the last application, we briefly in-
troduce the accompanying visualization tool BiochemicalVisual-
ization.jlthat has been developed alongside the BiochemicalAlgo-
rithms.jl framework.

4.1 Generating a water molecule
The core of BiochemicalAlgorithms.jl is represented in a class dia-
gram (Figure 3), which illustrates the framework’s intuitive design

and straightforward component interactions as can be seen in code
listing 1.

Code 1: Intuitive usage of BiochemicalAlgorithms.jl core compo-
nents� �

1 using BiochemicalAlgorithms
2 using BiochemicalVisualization
3
4 sys = System ()
5 h2o = Molecule ( sys )
6
7 o1 = Atom ( h2o , 1, Elements .O, radius = 1 .4 0 f0 )
8 h1 = Atom ( h2o , 2, Elements .H, radius = 1 .1 0 f0 )
9 h2 = Atom ( h2o , 3, Elements .H, radius = 1 .1 0 f0 )

10
11 h1 .r = [1, 0, 0]
12 h2 .r = [ cos ( deg2rad ( 105 )), sin ( deg2rad ( 105 )), 0]
13
14 Bond ( h2o , o1 . idx , h1 . idx , BondOrder . Single )
15 Bond ( h2o , o1 . idx , h2 . idx , BondOrder . Single )
16
17 println (" Number of atoms : ", natoms ( h2o ))
18 println (" Number of bonds : ", nbonds ( h2o ))
19
20 ball_and_stick ( sys )
21 stick ( sys )
22 van_der_waals ( sys )� �

We have carefully chosen intuitive names for classes representing
molecular entities and related functionalities. The System class
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Fig. 4: BiochemicalVisualization.jlsupports three models: ball-and-stick (left), stick (center) and van-der-waals (right) representa-
tion of the water molecule as generated by the code listing 1.

serves as the central element of any application. If not explicitly
created, a default system is generated automatically. Atoms can be
created along with their corresponding bonds and will automati-
cally be incorporated in the defined system. The resulting system,
containing a water molecule in this example, can be visualized us-
ing the BiochemicalVisualization.jl tool (Figure 4). More details
about the visualization capabilities are provided in the subsequent
section of the paper.
This approach emphasizes ease of use and functionality, two of the
key design goals mentioned earlier for BiochemicalAlgorithms.jl.
The intuitive interface and automatic system generation contribute
to RAD, another stated goal of the framework.

4.2 RMSD computation and Application of AMBER
force field

This example demonstrates the use of BiochemicalAlgorithms.jlfor
a common task in structural analysis: comparing two (or more)
molecular structures. The process involves several steps (see code
listing 2):

—Loading structures: Two PDB files are loaded into a Vector of
System, rather than a single system as in the previous example.

—Preprocessing: The systems are preprocessed using the function-
alities provided by the FragmentDB interface, a database con-
taining known fragments of molecules:
—Normalizes different naming standards
—Reconstructs missing parts of molecules
—Creates bonds (as the PDB format often lacks complete bond

information)
—Force field application: Each structure is applied to a molecular

force field, specifically the Amber force field, and the energy of
each system is computed.

—Structure mapping: The structures, which are different configu-
rations of the same molecule, are mapped onto each other.

—RMSD computation: The Root Mean Square Deviation (RMSD)
is calculated both before and after the mapping process.

This example showcases BiochemicalAlgorithms.jl’s extensive
functionality in just a few lines of code. The careful preparation
steps taken for the systems are visually represented in Figure 5. The
process demonstrates the framework’s capability to handle complex

structural analysis tasks efficiently, from file input and preprocess-
ing to energy calculations and structure comparison, aligning with
the design goals of functionality and ease of use.

Code 2: Comparison and mapping of two similar structures� �
1 sys = load_pdb .([" data / arnd1 . pdb ",
2 " data / arnd2 . pdb "])
3
4 fdb = FragmentDB ()
5 normalize_names !.( sys , Ref ( fdb ))
6 reconstruct_fragments !.( sys , Ref ( fdb ))
7 build_bonds !.( sys , Ref ( fdb ))
8
9 println .( sys )

10
11 compute_energy .( AmberFF .( sys ), verbose = true )
12
13 println (" RMSD before mapping : ",
14 compute_rmsd ( sys [1], sys [2]))
15
16 map_rigid !( sys [1], sys [2])
17
18 println (" RMSD after mapping : ",
19 compute_rmsd ( sys [1], sys [2]))� �

4.3 RAD in BALL and BiochemicalAlgorithms.jl
RAD is a key feature of the BiochemicalAlgorithms.jl package.
In the following, we show a comparison between BALL and
BiochemicalAlgorithms.jl for a simple task.
A typical situation in molecular simulation is to find out if atoms
are in a certain proximity of each other. This is of interest because
these atoms can exert interactions, which are important for the
stability of the configuration. However, we consider a simplified
definition of the problem: We want to count the contacts between
two separate molecules that are in close proximity. We will define
a contact if the distance between two carbon atoms Cβ is smaller
than 6 Å.

The code listing 3 shows the solution for the task in C++. Due
to readability, the necessary header files for this even short code
snippet are not shown. Using two nested for-loops, possible Cβ

atoms are searched, whose distance from each other is computed
in the next step.
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Code 3: The resulting C++ code for the example task consist of a lot of boilerplate code.� �
1 int count_contacts ( const AtomContainer & ac1 , const AtomContainer & ac2 , double thres = 6 .0 ) {
2 auto contacts = 0;
3 for ( auto ait1 = ac1 . beginAtom (); + ait1 ; ++ ait1 ) {
4 if ( ait1 -> getName () != " CB ")
5 continue ;
6
7 for ( auto ait2 = ac2 . beginAtom (); + ait2 ; ++ ait2 ) {
8 if ( ait2 -> getName () != " CB ")
9 continue ;

10
11 auto dist = ait1 -> getPosition (). getDistance ( ait2 -> getPosition ());
12 if ( dist <= thres ) {
13 contacts ++;
14 }
15 }
16 }
17 return contacts ;
18 }� �

Code 4: The resulting Julia code for the example task is much more elegant.� �
1 using BiochemicalAlgorithms
2
3 filter_cbeta ( ac ) = ( atom for atom in atoms ( ac ) if atom . name == " CB ")
4 is_in_contact ( r1 , r2 ) = distance ( r1 , r2 ) <= 6
5
6 function count_contacts ( ac1 :: AbstractAtomContainer { Float32 }, ac2 :: AbstractAtomContainer { Float32 })
7 count ( t -> is_in_contact (t...), (( a1 .r, a2 .r) for a1 in filter_cbeta ( ac1 ), a2 in filter_cbeta ( ac2 )))
8 end� �

Although the code is functional, it demonstrates the verbosity
of C++ compared to the solution in Julia 4. Here, two functions
are created serving for the filtering of the molecules and for the
computation of the distances of two atoms. With these two, the
actual function for the counting consists only of a single line of
code. This examples showcases the elegance of the Biochemi-
calAlgorithms.jl framework compared to BALL.

It is important to note here that we did not actually call the func-
tions. In Julia, only two additional lines of code are necessary: one
for reading the structures used as input and one line for calling the
function count_contacts with the input. The resulting snippet is
then ready to be run from a Julia REPL without any further cir-
cumstances. In contrast, in the case of the C++-program we would
have to write a main function, load the structures, call the func-
tion count_contacts. We would needed to include the necessary
header files. Then the resulting code would have to be compiled
and linked to the BALL framework. Even if we used the CMake
build system, which makes it easier to link and generate an exe-
cutable of our code to BALL, a CMakeLists.txt file is required to
be written. Of course, in order to link to the BALL framework, it
needs to be built ideally with the same compiler settings. For the
purpose of building BALL a quite long lists of dependencies have
to be built in advance for even just the core BALL functionalities.
After managing all these steps successfully, we can finally call the
executable to test the code snippet 3.
This example only serves to illustrate the basic approach for gener-
ating a small example using BALL or BiochemicalAlgorithms.jl.

4.4 Visualization using BiochemicalVisualization.jl
A key feature of BiochemicalAlgorithms.jl is the visualiza-
tion tool BiochemicalVisualization.jl that has been developed
alongside the main framework. Several Julia packages already
support 3D representations of proteins such as BioMakie.jl [6] or
Bio3DView.jl [10]. However, the motivation for the development
of BiochemicalVisualization.jl is to create a tool providing stan-
dard representations with a strong focus on modelling scenarios.
Additionally, we strongly believe that a tight integration between
the visualization tool and the underlying framework is necessary
for optimal performance. As shown in Figure 4 BiochemicalVi-
sualization.jl currently supports three different representation of
atomic structures, namely ball-and-stick, van-der-Waals,
and stick (cf. code listing 1).
When dealing with three-dimensional structures of macro-
molecules, visualization plays an important role for supporting the
development of insights into molecular functions. The possibility
to visualize and interactively modify the representations provides
great support during modelling scenarios. For instance, the tool
has been used to visualize different steps from code listing 2. The
image on the left represents the raw input read from the underlying
PDB file, the image in the middle shows the same input after
preprocessing it with the fragment data base (lines 4-7). Finally,
the mapping of both structures is shown in the image on the right.
As can be seen, the structures do not match perfectly onto each
other.

6



The Proceedings of the JuliaCon Conferences 7(78), 2025

Even this rather simple example already demonstrates the advan-
tage of a visual representation that can be modified and manipu-
lated in context of modelling scenarios and how the visualization
supports the development of knowledge of molecular functions.
The visualizations based on BiochemicalVisualization.jl can be in-
tegrated directly into Jupyter Notebooks or Visual Studio Code
making the analysis even more convenient.

5. Conclusion
In this manuscript, we introduced BiochemicalAlgorithms.jl,
a comprehensive framework designed for RAD in the field of
structure-based bioinformatics. Unlike many existing Julia pack-
ages in this field that typically focus on single tasks, our library
serves as a versatile foundation that encompasses a wide range of
functionalities, including file I/O, molecular modelling, molecular
mechanics methods, and is accompanied by a visualization tool.
Changing our development platform from C++ to Julia has greatly
simplified conforming to the design goals: ease-of-use, openness,
robustness, and functionality.

We believe that our framework facilitates both novice and ex-
perienced users in conducting molecular structure analysis with
minimal effort. BiochemicalAlgorithms.jl provides a robust yet
flexible core with additional functionalities. The integration of the
fragment database is particularly valuable for structure prepro-
cessing, including normalization of different naming standards,
reconstruction of missing fragments, and bond computation. Addi-
tionally, the implemented visualization tool allows for immediate
visual inspection of the structures.
Thereby, BiochemicalAlgorithms.jl is not intended to replace
functionality already provided by packages inside the Julia
ecosystem such as BioStructures.jl, but rather to provide a
general platform allowing interoperability of functionalities.
BiochemicalAlgorithms.jl includes well-defined interfaces, such
as those for molecular force fields, empowering experienced
users to implement custom applications. Table 1 shows timings
for our implementation of an AMBER force field in compari-
son to BALL. These results indicate comparable performance
with some tasks being slower in BiochemicalAlgorithms.jlẆe
are committed to improving performance of the force field
implementation and working on alternative force field implementa-
tions such as CHARMM, which will be available in the near future.

Future directions will include an extensive benchmark study to
evaluate our implementation against its predecessor, BALL. This
will involve creating a modern benchmarking suite in C++ for
BALL to allow comparison with results from BenchmarkTools.
Overall, we see BiochemicalAlgorithms.jl as a valuable contribu-
tion to the field of structural bioinformatics in Julia, combining ease
of use with powerful functionality to support a wide range of appli-
cations.
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