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ABSTRACT
Blank localization (also known as workpiece referencing) is an es-
sential task in machining. It aims to precisely establish the geo-
metric relation of the machine tool (mill, lathe, etc.) and the work-
piece. We introduced the concept of multi-operation blank local-
ization to address this task for drilling and milling scenarios in a
semi-automated way, which allows positioning different machin-
ing features (e.g., different holes) separately in order to exploit the
tolerances on the relative position of those features to compen-
sate the small errors of the blank. The method takes as input the
measured rough geometry and the machining CNC code, and com-
putes the best possible position of each feature considering ma-
chining allowances and tolerances by solving a convex quadrati-
cally constrained quadratic program (QCQP). The versatility and
extensibility of the Julia language helped the development of this
algorithm, materializing in the BlankLocalizationCore.jl
package. Its flexibility and ease of use make it an excellent research
tool that can be deployed in production as well.
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1. Introduction
Cast parts may have small geometric variations from lot to lot that
need to be addressed before machining by altering the CNC code.
Current practice is dominated by iterative adjustments by human
operators, which requires highly trained workers and takes a long
time. Automated methods exist for complex free-form parts like
wind turbines that place the entire blank as a single solid object [6].
Multi-operation blank localization [3] however handles groups of
features independently, providing greater flexibility than traditional
approaches. It focuses on drilling and milling which are among
the most common machining operations, making it applicable to
a wide range of products. The abstract method and its implemen-
tation were developed in parallel, which required a language with
wide variety of tools and support for easy prototyping. Exactly for
these reasons we chose the Julia language [1].

2. Multi-operation blank localization
The problem involves looking for the optimal position for each to-
be-machined feature (short: machined feature) on the workpiece.
These features are grouped together, with each group defined rela-
tive to a specific reference point known as the part zero. The layout
of these part zeros is controlled by the structure of the machining
CNC code. By moving the part zeros, we can indirectly control the

positions of the associated features. Each part zero—and by exten-
sion, each group—can be moved independently, which gives the
method its flexibility. In the optimization program, the positions of
the part zeros are the decision variables.
To ensure the required surface finish, the machined features must
enclose the pre-cast features (rough features) on the blank with a
minimum machining allowance (a lower bound parameter). The al-
lowance calculation requires the final part specification in the form
of the machining CNC code as well as a representation of the rough
geometries. From their positions and geometric parameters their
distance can be computed, which then can be used to generate the
allowance constraints for the optimization program.
The other set of constraints roots from respecting the dimensional
tolerances describing functional properties (e.g. connections to
mating parts). The developed tolerance model encodes the distance
of machined-machined (or sometimes machined-rough) features
as axis-aligned minimum and maximum distance. Fig. 1 from [3]
shows some examples for these features.
Following common machining practice, the objective of the op-
timization program is to achieve as little tolerance deviation as
possible. The problem is formulated as a convex quadratically
constrained quadratic program (convex QCQP). The optimization
model itself and use-cases are described in [2] and [3], while im-
plementation details are given in the following section.

Fig. 1: 3D scanned rough features (in grey), two machined feature groups
(orange and purple) with their part zeros, and tolerances connecting the
machined features [3].
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3. Implementation in Julia
Julia enabled us to develop an implementation with the following
properties:

—Concise interface to generate the parameters of the declarative
optimization program based on procedural geometric calcula-
tions.

—Support for a variety of geometrical representations, especially
regarding the differences of drilling/milling operations and free-
form/primitive geometry representations.

—Support for analyzing and visualizing the results.

The implementation is built around JuMP [5], which serves as
the interface to the underlying optimization solver. With JuMP’s
excellent design, combining the necessary geometric calculations
and the declarative optimization program definition was straight-
forward. Other advantage of JuMP is that solvers can be easily
swapped. For development, the (commercial) FICO Xpress solver
was used, but our industry partner could use the (open source) Ipopt
or SCIP solvers without issue.
To handle the tolerance and allowance calculations, the part defi-
nition (CNC code), rough geometry measurements and tolerances
need to be stored. Their representation is built upon a flexible ge-
ometry type system.
The CNC code can be represented with plane and cylinder ge-
ometries for milling and drilling operations. This "type" informa-
tion of the geometries is encoded with Julia types. The primitive
or free-form nature of the geometries is implemented with the
holy traits pattern and is necessary because different instruments
output different types of geometric data. For example, a coordi-
nate measurement machine will provide primitive geometry defi-
nitions like disks and cylinders, while a 3D scanner outputs point
clouds or meshes (called free-form collectively). The IsPrimitve
or IsFreeForm traits are applied to geometry types independently
of their planar or cylindrical type. Code block 1 shows a shortened
version of the implemented type system.

Code 1: Shortened implementation of the type system used by
BlankLocalizationCore.jl.� �

1 # Type tree for localization geometries .
2 # " ALoc ": AbstractLocalization
3 abstract type ALocGeometry end
4 abstract type AHoleGeometry <: ALocGeometry end
5 abstract type APlaneGeometry <: ALocGeometry end
6
7 # Trait to describe the " style " of an ALocGeometry .
8 abstract type GeometryStyle end
9 struct IsPrimitive <: GeometryStyle end

10 struct IsFreeForm <: GeometryStyle end� �
The optimization model uses a "feature point" concept which re-
quires the position and some parameters of the geometries. A func-
tion interface is designed for accessing these values. The package
documentation contains the list of functions that need to be defined
but some are showcased in code block 2. One function that we want
to highlight is the visualizationgeometry, which needs to re-
turn a Meshes.jl object that will be passed to the Meshes.viz
function. Using the Meshes ecosystem [4], we could not only in-
teractively inspect the results of the optimization, but also produce
publication quality images, like Fig. 1.

Code 2: Defining a new type for the optimization model.� �
1 struct MyDisk <: AHoleGeometry
2 p:: Vector { Float64 } # center point
3 n:: Vector { Float64 } # surface normal
4 d:: Float64 # diameter
5 end
6
7 GeometryStyle (:: Type { MyDisk }) = IsPrimitive ()
8
9 featurepoint (:: IsPrimitive , x:: MyDisk ) = x.p

10 featureradius (:: IsPrimitive , x:: MyDisk ) = x.d/2
11
12 using Meshes
13
14 function visualizationgeometry ( geom :: MyDisk )
15 plane = Plane ( Point3 ( geom .p), Vec3 ( geom .n))
16 return Disk ( plane , geom .d/2)
17 end� �

4. Results and future work
Future plans for the package and the method itself include an over-
haul of the tolerance modelling scheme. It should be possible to
generalize the current dimensional tolerances for more GD&T tol-
erances by introducing a new type hierarchy based on the current
geometry type tree and a function interface for the optimization
program. Another direction of development is to extend the sup-
ported operations from drilling and milling to others, such as turn-
ing, although this is more of a research question than an implemen-
tation issue.
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