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ABSTRACT
DTOR is a framework to access, analyze, and simulate the global
fleet of ocean observing devices (or ocean robots) that monitor
climate change. It brings these observations to Julia and lets us
pair ocean robots with virtual counterparts (or twins). Digital twins
provide a bridge from the data to predictive models and enable ma-
chine learning. In turn, observing system simulations in a digital
environment can help evaluate observational strategies a priori, dur-
ing deployment, or afterwards. In this paper we present the DTOR
framework, its supported observing systems, capabilities to simu-
late ocean robots, and envisioned applications.
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1. Introduction
The DTOR framework was introduced at the Symposium on Ad-
vances in Ocean Observation in 2022, and later presented to US-
CLIVAR and JuliaCon in 2023, and the OceanPredict Symposium
in 2024. The primary goal of DTOR is to associate ocean observing
systems (or ocean robots) with virtual counterparts (or twins), and
do it for the whole fleet of ocean robots that are currently at sea
or have observed the Ocean in the past (Fig. 1). The virtual twins
are to be created through numerical model simulations, which can
come in different flavors and languages. The simulation of observ-
ing systems in the future, as climate change progresses, is also part
of the scope of the DTOR project. At JuliaCon 2023, we presented
a solution to (1) access and manipulate the data collected by ocean
robots (inc. OCEANROBOTS.JL and ARGODATA.JL), and (2) sim-
ulate such observations in a digital environment using a hierarchy
of models (incl. CLIMATEMODELS.JL and MITGCM.JL).
The model hierarchy includes fast climate model emulators, global
model output, ocean reanalyses, high-resolution models, and sev-
eral ways to represent marine ecosystems. Through a streamlined
workflow, CLIMATEMODELS.JL (JuliaCon 2021, 2023) makes it
easy to operate these models that can provide a digital environ-
ment for the virtual ocean robot fleet to observe and navigate.
DRIFTERS.JL [9] can be used to predict pathways of ocean robots
that tend to follow ocean currents. MESHARRAYS.JL adds basic
geospatial support for global climate model grids, providing capa-
bilities such as interpolation and geolocation on a grid. The frame-
work leverages and links to a variety of highly capable Julia pack-

Fig. 1: Ocean robots that were collecting data on 2024/11/29 for three types
of observations (blue, green, and red dots). Planned deployments of Argo
profilers are also shown (purple dots). Data is from https://www.ocean-
ops.org and queried via OCEANROBOTS.JL.

ages from the community. It notably provides user-friendly plotting
recipes via its MAKIE.JL extension, and tutorial examples in the
form of PLUTO.JL notebooks.

2. Robots Observing the Ocean
Part of the fleet of ocean robots currently at sea is depicted in Fig. 1,
focusing on a few widely used observing platforms. To create this
map, OCEANROBOTS.JL queries the meta-data-base from Ocean-
OPS.org, which keeps track of the whole ocean fleet of scientific
observing platforms in real time, and provides a RESTful API.
The OCEANROBOTS.JL package provides an interface to this API
via the ‘OceanOPS‘ module. It then defines data structures such
as ‘SurfaceDrifter‘ and ‘ArgoFloat‘ to access and utilize data from
widely used ocean observing platforms. The list of ocean observing
platforms currently supported by OCEANROBOTS.JL is in Tab. 1.
A fraction of the geospatial data obtained by surface ocean drifters
in the past (green dots in Fig. 1) is depicted in Fig. 2 using OCEAN-
ROBOTS.JL and MAKIE.JL. These drifting buoys tend to follow
ocean currents at approximately 15 meters depth. They can mea-
sure sea surface temperature and sea level pressure along their tra-
jectory. The data archive currently holds 19396 drifter trajectories,
collected over the past 50 years, which allow us to create climatolo-
gies such as the one shown in Fig. 3.
Argo profiling floats (blue dots in Fig. 1; Code 1) are one of our
main tools to monitor global warming below the sea surface. These
devices provide a less detailed view of oceanic pathways (Fig. 4,
top panels) than surface drifters do (e.g., Fig. 2), since Argo floats
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Fig. 2: A few of the ocean drifters (5% of 19396) that have been deployed
to follow near surface ocean currents in the past.

Table 1. : Ocean observing systems targeted by OCEANROBOTS.JL, and
associated data structures (or blank if not yet implemented).

Platform Type Data Structure

surface drifters SurfaceDrifter, CloudDrift
drifting profilers ArgoFloat
moored buoys OceanSite, NOAAbuoy
sea gliders Gliders
expendable bathy-thermographs
sail drones

research vessel data CCHDO
ships of opportunity data
marine mammals data

only report their location once every ten days. However, Argo floats
have a crucial diving capability that surface drifters don’t have –
they go up and down the water column to measure temperature
and salinity (T,S; bottom panels of Fig. 4). The advent of the Argo
array in the early 2000s [19] thus opened up a whole new era of
geospatial analysis, state estimation, and parameter inference over
the global Ocean [8, 4, 15, 5, 6, 7, 10]. On 2024/05/27 for example
there were 3837 Argo floats at sea, and a total of 18730 in the Argo
data base. Since the Argo array is such an important observing sys-
tem, a dedicated package called ARGODATA.JL was created that
OCEANROBOTS.JL uses under the hood.

Code 1: Download and visualize one Argo float data as in Fig. 4.� �
using OceanRobots , CairoMakie ;
argo = read ( ArgoFloat (), wmo = 6900900 );
fig = plot ( argo , option =: standard )� �
OCEANROBOTS.JL brings these key climate data sets to the Ju-
lia community. It provides a bridge to climate scientists working
on observations and models, who are interested in leveraging the
powerful Julia software ecosystem (e.g., for numerical modeling,
machine learning, and statistical analysis), and have much exper-
tise to contribute. The development of OCEANROBOTS.JL aims to
help advance (1) how we understand and simulate observations that
monitor climate change in the oceans, and (2) climate literacy and
education by providing simple apps that anyone can use.

Fig. 3: Sample mean eastward velocity estimated from drifter data, with a
grid resolution of 1/2 degree.

3. Simulating Ocean Robots
Our ability to simulate the data produced by ocean robots is directly
linked to our ability, or lack thereof, to explain observed variations
and decipher mechanisms from data. Numerical modeling is thus
often motivated and driven by observations. Many research activ-
ities involve combining ocean models and observations, with the
typical goal of learning model parameters, statistics, and dynam-
ics from data [4, 5, 6, 7, 10]. Observing system simulations in a
digital environment (using models) enable a wide range of applica-
tions – to test out innovative platform or sensor designs ahead of
deployment, to optimize global monitoring strategies, or to guide
deployed assets in real time for example.
The two simple examples presented below illustrate the simulation
of (1) environmental sensors and (2) observing platforms. First, in
Fig. 5 we simulate an Argo data collection for temperature (T) and
salinity (S) by sampling an ocean climatology along the track of
the Argo float (the one from Fig. 4). This calculation requires (1)
a model prediction of T (x, y, z, t) and S(x, y, z, t), which can be
based on statistical or mechanistic models on a grid, and (2) tools
that deal with the Earth geography, and can localize observations
on a grid, and perform interpolation tasks.
To create Fig. 5, we use CLIMATOLOGY.JL to access the OCCA
climatology [4], and then interpolate T (x, y, z, t), S(x, y, z, t) via
geospatial tools from MESHARRAYS.JL. The OCCA climatology
is a previously trained model that consists of 12 monthly three-
dimensional fields of T, S (one per calendar month). The fact that
Figs. 4 and 5 show broadly similar patterns reflects that the pre-
dictive model is skillful, and that T, S contrasts seen in Fig. 4
largely result from the sensor moving with the Argo float across
the Ocean’s T, S geography. Differences between Figs. 4 and 5
can in turn provide a basis for improving the predictive model, for
example by including time variability beyond the seasonal cycle,
or through various methods for data assimilation, artificial intelli-
gence, or parameter inference [4, 5, 6, 7, 11].
Our second example focuses on the simulation of observing plat-
forms moving with ocean currents. This basic simulation of surface
drifter pathways uses the geostatistical average of velocities calcu-
lated in Fig. 3 as a predictive model for the U(x, y, t), V (x, y, t)
velocity fields. In Code 2, this gridded data set is provided as in-
put to DRIFTERS.JL, which then releases virtual drifters and calcu-
lates their trajectories following the flow field (Fig. 7). While this
simple drifter trajectory prediction model neglects stochastic vari-
ability and small scales in ocean currents altogether (Fig. 8), it is
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Fig. 4: Data collected by a profiling float from the Argo array. Temperature
and salinity profiles, taken every ten days, extend to 2000m depth.

Fig. 5: Virtual Argo profiles predicted using the OCCA climatology, inter-
polated to the positions of the float shown in Fig. 4.

sufficient to capture the main mean pathway of sea water through
the Gulf of Mexico region – the well-known loop current feeding
the Gulf Stream via Florida Strait (Fig. 7).

Code 2: Simulate surface drifter pathways in the Gulf of Mexico
(Fig. 6) from flow fields u, v and initial positions x, y. Visualization
code is provided in the DRIFTERS.JL documentation.� �
using OceanRobots , Drifters , CairoMakie ;
P= Drifters . Gulf_of_Mexico_setup ();
F= FlowFields (u=P.u,v=P.v, period =P.T);
I= Individuals (F,P. x0 ,P. y0 );
[ solve !(I,P.T .+P. dT *(n-1)) for n in 1:P. nt ];� �
Much more could be done to improve the details and skill of
the simple models used here. Higher-order and higher-resolution

Fig. 6: Drifter trajectories in the Gulf of Mexico region. Large velocities
highlight the path of the Gulf Stream, being fed by the loop current.

Fig. 7: Virtual drifter trajectories predicted using (1) just the climatologi-
cal mean flow field estimated from drifters (Fig. 3, plus the corresponding
northward component) and (2) DRIFTERS.JL to calculate trajectories.

model output are available to represent important aspects of what
is being observed, but neglected in Figs. 5 and 7, such as the tur-
bulent dispersion seen in Fig. 6 or the small-scale variations visible
in Fig. 4. Small scale temperature fronts and currents are present
everywhere in the ocean, with a lot of heterogeneity across regions,
as illustrated in Fig. 8. Hence it is important to include global km-
scale ocean simulations in our model hierarchy (see section 4).

4. Digital Twin Framework
Digital twins can be defined as per the U.S. Committee on Founda-
tional Research Gaps and Future Directions for Digital Twins [16]
:

DEFINITION 1. A digital twin is a set of virtual information
constructs that mimics the structure, context, and behavior of a
natural, engineered, or social system (or system-of-systems), is dy-
namically updated with data from its physical twin, has a predictive
capability, and informs decisions that realize value. The bidirec-
tional interaction between the virtual and the physical is central to
the digital twin.

In the digital twins for ocean robots framework (DTOR), interactiv-
ity is facilitated by Julia and its large ecosystem of software pack-
ages. In particular, MAKIE.JL [2] and PLUTO.JL [22] let us op-
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erate even complex modeling workflows from notebooks and apps.
The tutorial examples in OCEANROBOTS.JL, ARGODATA.JL, CLI-
MATEMODELS.JL, and MITGCM.JL [11] are notably available as
Pluto notebooks. Interaction between model and data is further en-
abled by the rich Julia ecosystem for machine learning, data assim-
ilation, parameter inference, etc. Fig. 9 provides an example where
FLUX.JL [14] is used to train neural networks to predict chlorophyll
concentration (linked to marine microbe abundance) from environ-
mental parameters as done in the CANYON model [21, 1].
The core of DTOR is formed by OCEANROBOTS.JL, ARGO-
DATA.JL, and MESHARRAYS.JL for the physical twins, along
with CLIMATOLOGY.JL, CLIMATEMODELS.JL, MITGCM.JL, and
DRIFTERS.JL for the virtual twins (i.e., predictive modeling). The
CLIMATEMODELS.JL interface streamlines the use of models im-
plemented in various languages. The model hierarchy already in-
cludes models listed in this paper, and is easy to extend via the
CLIMATEMODELS.JL interface. DTOR can also simulate observa-
tions in the future based on climate model predictions (Fig. 10), and
CLIMATEMODELS.JL provides two options for this kind of appli-
cations – either querying the CMIP6 archive of model output [3] or
using a fast emulator such as Hector [13].
Within our model hierarchy, future climate scenarios like Fig. 10
can be downscaled using gridded climatologies and reanalyses
[4, 5, 10]. The ECCO4 and OCCA2 reanalyses are simple to rerun
with perturbed surface forcing fields via MITGCM.JL, which is par-
ticularly convenient for such applications. Multi-decadal solutions
produced in this way can then be further downscaled using km-
scale model output (Fig. 8). At the end of this modeling workflow,
OCEANROBOTS.JL, MESHARRAYS.JL and DRIFTERS.JL enable
calculations such as Figs. 5 and 7, for any of our models. DTOR
can also take advantage of gridded satellite data, incl. sea surface
temperature and sea level anomalies via CLIMATOLOGY.JL, which
can sometimes be used instead of ocean reanalyses.

Fig. 8: Temperature fronts in a global km-scale MITgcm simulation. Plotted
is the logarithm of the spatial gradient of a temperature snapshot.

5. Planned Extensions
Further development of the DTOR framework is expected to pro-
ceed in several directions. First, we’d like to integrate additional
types of ocean observing platforms, starting with those that do not
have a data structure listed yet in Tab. 1. Observational networks
that focus on either the coastal ocean, a specific region, or local
field experiments could also be supported in the future. In addition,

Fig. 9: Ensemble of model predictions (black curves) by a simple multi-
layer perceptron (from Flux.jl) trained to predict Chlorophyll concentration
(present in green algea and marine microbes) from environmental variables
(T, S, but also oxygen, optical backscatter, and solar radiation). The blue
line is the model ground truth that we seek to estimate, and was obtained
through proper spatial averaging of the gridded data set from which the
training data itself was generated.

Fig. 10: Prediction of global warming based on different scenarios, called
Shared Socioeconomic Pathways (SSPs), as defined by the Intergovernmen-
tal Panel on Climate Change (IPCC). These predictions were generated us-
ing the Hector model [13] via CLIMATEMODELS.JL.

a top level API to interact with DTOR as a whole through cloud
services is envisioned and being developed.
A second direction to pursue is that of further integration
with the Julia software stack. Ocean modeling capabilities
such as OCEANANIGANS.JL [18], PLANKTONINDIVIDUALS.JL
[23], AIBECS.JL [17], OCEANCOLORDATA.JL, and WORLDO-
CEANATLASTOOLS.JL are of immediate relevance. More broadly,
there is a lot of very useful work being done across of num-
ber of github organizations that DTOR could further leverage
and integrate with. To list a few : JULIACLIMATE, JULIAO-
CEAN, CLIMA, JULIAGEO, JULIAEARTH, JULIASPACE, JU-
LIAROBOTICS, JULIADYNAMICS, MAKIEORG, PLUTOORG, JU-
LIAHUB, GENIEFRAMEWORK, JULIASTATS, SCIML, FLUXML,
TURING, and JULIAAI.
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6. Science Applications
Our current focus is on geospatial analyses that track global warm-
ing and marine heatwaves using Argo data [10]. Another exam-
ple from our research is with the C-Streams observational program
(UK-US) which is releasing drifters near Florida Strait to track the
nutrient stream that is associated with the Gulf Stream. A simula-
tion of these pathways is shown in Fig. 11, which is based on the
monthly mean ECCO4 climatology for ocean transports [5, 12, 20],
and uses CLIMATOLOGY.JL, MESHARRAYS.JL, and DRIFTERS.JL
to calculate pathways. Other applications at the scale of oceanic
basins include tracking ocean plastic pollution, monitoring biolog-
ical impacts of extreme events and global warming, or the opti-
mization of the global climate monitoring fleet of ocean robots.
DTOR could be used to pilot field experiments (e.g., S-MODE, to
choose an example from the recent past). Related projects on dig-
ital twins, not focused on exploiting Julia but interested in ocean
observations, include the EU funded Destination Earth program,
Mercator Ocean International’s Digital Twin Ocean, and the UN
Decade Action’s DITTO initiative (Digital Twins of The Ocean).

Fig. 11: Tracking Gulf Stream waters from Florida Strait to the subpolar
gyre using virtual drifters that follow the three dimensional ocean circula-
tion. Each dot color indicates the virtual drifter depth – red dots near the sea
surface, while white dots are below 1500m depth.
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