
RobustNeuralNetworks.jl: a Package for Machine Learning
and Data-Driven Control with Certified Robustness

Nicholas H. Barbara1, Max Revay1, Ruigang Wang1, Jing Cheng1, and Ian R. Manchester1

1University of Sydney, Australian Centre for Robotics

ABSTRACT

Neural networks are typically sensitive to small input pertur-
bations, leading to unexpected or brittle behaviour. We present
RobustNeuralNetworks.jl: a Julia package for neural net-
work models that are constructed to naturally satisfy a set of user-
defined robustness metrics. The package is based on the recently
proposed Recurrent Equilibrium Network (REN) and Lipschitz-
Bounded Deep Network (LBDN) model classes, and is designed
to interface directly with Julia’s most widely-used machine learn-
ing package, Flux.jl. We discuss the theory behind our model
parameterization, give an overview of the package, and provide a
tutorial demonstrating its use in image classification, reinforcement
learning, and nonlinear state-observer design.

Keywords
Robustness, Machine Learning, Image Classification, Reinforce-
ment Learning, State Estimation, Data-Driven Control

1. Introduction
Modern machine learning relies heavily on rapidly training and
evaluating neural networks in problems ranging from image classi-
fication [6] to robotic control [22]. Most neural network architec-
tures have no robustness certificates, and can be sensitive to adver-
sarial attacks and other input perturbations [7]. Many approaches
that address this brittle behaviour rely on explicitly enforcing con-
straints during training to smooth or stabilize the network response
[19, 10]. While effective on small-scale problems, these methods
are computationally expensive, making them slow and difficult to
scale up to complex real-world problems.

Recently, we proposed the Recurrent Equilibrium Network (REN)
[20] and Lipschitz-Bounded Deep Network (LBDN) or sandwich
layer [27] model classes as computationally efficient solutions
to these problems. RENs are flexible in that they include many
common neural network models, such as multi-layer-perceptrons
(MLPs), convolutional neural networks (CNNs), and recurrent neu-
ral networks (RNNs). Their weights and biases are parameterized to
naturally satisfy a set of user-defined robustness metrics constrain-
ing the internal stability and input-output sensitivity of the network.
When a network is guaranteed to satisfy a robust metric, we call this
a robustness certificate. An example is a Lipschitz bound, which
restricts the network’s amplification of input perturbations in its
outputs [19]. LBDNs are specializations of RENs with the spe-
cific feed-forward structure of deep neural networks like MLPs or
CNNs, and built-in restrictions on the Lipschitz bound.

This special parameterization of RENs and LBDNs means that we
can train models with standard, unconstrained optimization meth-
ods (such as stochastic gradient descent) while also guaranteeing
their robustness. Achieving the “best of both worlds” in this way
is the main advantage of the REN and LBDN model classes, and
allows the user to freely train robust models for many common ma-
chine learning problems, as well as for more challenging real-world
applications where safety is critical.

This papers presents RobustNeuralNetworks.jl: a package for
neural networks with built-in robustness certificates. The package
contains implementations of the REN and LBDN model classes
introduced in [20] and [27], respectively, and relies heavily on
key features of the Julia language [3] (such as multiple dispatch)
for an efficient implementation of these models. The purpose of
RobustNeuralNetworks.jl is to make our recent research in ro-
bust machine learning easily accessible to users in the scientific
and machine learning communities. We have therefore designed
the package to interface directly with Flux.jl [9], Julia’s most
widely-used machine learning package, making it straightforward
to incorporate our robust neural networks into existing Julia code.

The paper is structured as follows. Section 2 provides an overview
of the RobustNeuralNetworks.jl package, including a brief in-
troduction to the model classes (Sec. 2.1), their robustness cer-
tificates (Sec. 2.2), and their implementation (Sec. 2.3). Section 3
guides the reader through a tutorial with three examples to demon-
strate the use of RENs and LBDNs in machine learning: image clas-
sification (Sec. 3.1), reinforcement learning (Sec. 3.2), and nonlin-
ear state-observer design (Sec. 3.3). Section 4 offers some conclud-
ing remarks and future directions for robust machine learning with
RobustNeuralNetworks.jl. For more detail on the theory be-
hind RENs and LBDNs, and for examples comparing their perfor-
mance to current state-of-the-art methods on a range of problems,
we refer the reader to [20] and [27] (respectively).

2. Package overview
RobustNeuralNetwork.jl contains two classes of neural net-
work models: RENs and LBDNs. This section gives a brief
overview of the two model architectures and how they are parame-
terized to automatically satisfy robustness metrics. We also provide
some background on the different types of robustness metrics used
to construct the models.

2.1 What are RENs and LBDNs?
A Lipschitz-Bounded Deep Network (LBDN) is a (memoryless)
deep neural network with a built-in upper-bound on its Lipschitz
constant (Sec. 2.2.3). Suppose the network has inputs u ∈ Rnu ,
outputs y ∈ Rny , and hidden units zk ∈ Rnk . The structure of an

1

The Proceedings of the JuliaCon Conferences 7(68), 2025

LBDN is an L-layer feed-forward network (like an MLP or CNN)

z0 = x (1)
zk+1 = σ(Wkzk + bk), k = 0, . . . , L− 1 (2)

y = WLzL + bL, (3)

where the Wk, bk are the layer weights and biases (respectively),
and σ is a nonlinear activation function (e.g. tanh, ReLU).

A Recurrent Equilibrium Network (REN) is a recurrent model (with
memory) described by a linear dynamical system in feedback with
a nonlinear activation function. Writing xt ∈ Rnx for the internal
states of the system, a REN can be expressed mathematically as

xt+1

vt
yt

 =

W︷ ︸︸ ︷ A B1 B2

C1 D11 D12

C2 D21 D22

xt

wt

ut

+

b︷ ︸︸ ︷bxbv
by

, (4)

wt = σ(vt) :=
[
σ(v1t) σ(v2t) · · · σ(vqt)

]⊤
, (5)

where vt, wt ∈ Rnv are the inputs and outputs of the activation
function σ. Graphically, this is equivalent to Figure 1, where the
linear system G is given by Equation 4.

Fig. 1. Feedback structure of a recurrent equilibrium network.

REMARK 1. [20] makes special mention of “acyclic” RENs,
which have a lower-triangular D11 matrix. Acyclic RENs are sig-
nificantly more efficient to evaluate than RENs with a dense D11

matrix, and performance is typically similar across a range of prob-
lems. All RENs in RobustNeuralNetworks.jl are acyclic RENs.
All LBDNs are acyclic by definition (see [27, Eqn. 4]).

2.2 Robustness metrics and IQCs
All neural network models in RobustNeuralNetworks.jl are
designed to satisfy a set of user-defined robustness metrics. We
consider four particular robustness metrics relating to the internal
stability of a model and its input-output map. LBDNs are more
specialized and are specifically constructed to have a finite, user-
tunable Lipschitz bound (Sec. 2.2.3).

2.2.1 Contracting systems. Firstly, all of our RENs are contract-
ing systems. This means that they exponentially “forget” their ini-
tial conditions. If the system starts at two different initial condi-
tions but is given the same input sequence, the internal states will
exponentially converge over time. Figure 2 shows an example of a
contracting REN with one input and a single internal state, where
two simulations of the system start with different initial conditions
but are provided the same sinusoidal input. See [14] for a detailed
introduction to contraction theory for dynamical systems.

2.2.2 Incremental IQCs. We can define additional robustness
metrics for the input-output map of RENs with incremental inte-
gral quadratic constraints (IQCs) [17]. Suppose we have a model
M starting at two different initial conditions a, b with two different
input signals u, v, and consider their corresponding output trajec-
tories ya = Ma(u) and yb = Mb(v). The model M satisfies the

Time samples
0 100 200 300 400 500 600

In
te

rn
al

 s
ta

te

-10

0

10

Initial condition 1
Initial condition 2

Fig. 2. Simulation of a contracting REN with a single internal state. The
system is simulated from two different initial states with the same sinusoidal
input. The contracting system exponentially forgets its initial condition.

IQC defined by matrices (Q,S,R) if

T∑
t=0

[
ya
t − yb

t

ut − vt

]⊤ [
Q S⊤

S R

] [
ya
t − yb

t

ut − vt

]
≥ −d(a, b) ∀T (6)

for a function d(a, b) ≥ 0, d(a, a) = 0, where 0 ⪰ Q ∈ Rny×ny

is negative semi-definite, S ∈ Rnu×ny , R = R⊤ ∈ Rnu×nu .

In general, the IQC matrices (Q,S,R) can be chosen (or opti-
mized) to meet a range of performance criteria. The following spe-
cial cases are worth noting.

2.2.3 Lipschitz bounds (smoothness). If Q = − 1
γ
I , R = γI ,

S = 0 for some γ ∈ R with γ > 0, the model M satisfies a
Lipschitz bound (incremental ℓ2-gain bound) of γ defined by

∥Ma(u)−Mb(v)∥2 ≤ γ2∥u− v∥2 (7)

where ∥·∥ denotes the ℓ2 norm. Qualitatively, the Lipschitz bound is
a measure of the network’s “smoothness”. If γ is small, then small
changes to the inputs u, v induce only small changes to the model
output. If γ is large (or unbounded, as in the case of, e.g., MLPs and
CNNs), then the model output can change significantly even with
negligible changes to the inputs. This can make the model highly
sensitive to noise, adversarial attacks, and other input disturbances.

As the name suggests, all LBDN models are constructed to have a
user-tunable (or learnable) Lipschitz bound.

2.2.4 Incremental passivity. Passivity is a generalized notion of
energy conservation from classical mechanics [25]. We have im-
plemented two versions of incremental passivity. In each case, the
network must have the same number of inputs and outputs.

(1) If Q = 0, R = −2νI, S = I where ν ≥ 0, the model is
incrementally passive (incrementally strictly input passive if
ν > 0). Mathematically, the following inequality holds.

⟨Ma(u)−Mb(v), u− v⟩ ≥ ν∥u− v∥2 (8)

(2) If Q = −2ρI,R = 0, S = I where ρ > 0, the model is incre-
mentally strictly output passive. Mathematically, the following
inequality holds.

⟨Ma(u)−Mb(v), u− v⟩ ≥ ρ∥Ma(u)−Mb(v)∥2 (9)

Passivity properties are useful in, for example, learning stable dy-
namical systems [4]. The remainder of this paper will focus on con-
traction and Lipschitz bounds for demonstrative purposes.

2

The Proceedings of the JuliaCon Conferences 7(68), 2025

2.3 Direct and explicit parameterizations
The key advantage of the models in RobustNeuralNetworks.jl
is that they naturally satisfy the robustness metrics of Section 2.2
– i.e., robustness is guaranteed by construction. There is no need
to impose additional (possibly computationally-expensive) con-
straints while training a REN or an LBDN. One can simply use
unconstrained optimization methods like gradient descent and be
sure that the final model will satisfy the desired properties.

We achieve this by constructing the weight matrices and bias vec-
tors in our models to automatically satisfy specific linear matrix in-
equalities (see [20] for details). The learnable parameters of a REN
or LBDN are a set of free, unconstrained variables θ ∈ RN . When
the set of learnable parameters is exactly RN like this, we call the
parameterization a direct parameterization. Equations 3 to 4 de-
scribe the explicit parameterizations of RENs and LBDNs: model
structures that can be called and evaluated on data. For a REN, the
explicit parameters are θ̄ := [W, b], and for an LBDN they are
θ̄ := [W0, b0, . . . ,WL, bL]. The mapping θ 7→ θ̄ depends on the
specific robustness metrics to be imposed on the explicit model.

2.3.1 Implementation. RENs are defined by two abstract types in
RobustNeuralNetworks.jl. Subtypes of AbstractRENParams
hold all the information required to directly parameterize a REN
satisfying some robustness metrics. For example, to initialize the
direct parameters of a contracting REN with 1 input, 10 states, 20
neurons, 1 output, and a relu activation function, we use the fol-
lowing. The direct parameters θ are stored in model_ps.direct.� �
using Flux , RobustNeuralNetworks

T = Float32
nu , nx , nv , ny = 1, 10 , 20 , 1
model_ps = ContractingRENParams {T}(

nu , nx , nv , ny ; nl = Flux . relu)

println (model_ps . direct) # Access direct params� �
Subtypes of AbstractREN represent RENs in their explicit form
which can be evaluated on data. The conversion from direct to ex-
plicit parameters θ 7→ θ̄ is performed when the REN is constructed
and the explicit parameters θ̄ are stored in model.explicit.� �
model = REN (model_ps) # Create explicit model
println (model . explicit) # Access explicit params� �
Figure 3 illustrates this architecture. We use a similar interface
based on AbstractLBDNParams and AbstractLBDN for LBDNs.

2.3.2 Types of direct parameterizations. There are currently four
REN parameterizations implemented in this package:

(1) ContractingRENParams parameterizes contracting RENs
with a user-defined upper bound on the contraction rate.

(2) LipschitzRENParams parameterizes RENs with a user-
defined (or learnable) Lipschitz bound γ ∈ (0,∞).

(3) PassiveRENParams parameterizes incrementally input pas-
sive RENs with user-tunable passivity parameter ν ≥ 0.

(4) GeneralRENParams parameterizes RENs satisfying some
general behavioural constraints defined by an incremental IQC
with parameters (Q,S,R).

Fig. 3. Association of models and their parameters in (a) Flux.jl and (b)
RobustNeuralNetworks.jl. In (a), model parameters θ are associated
with the model. In (b), the direct parameters θ are associated with the pa-
rameterization model_ps, and are converted to explicit parameters θ̄ when
the model is constructed for evaluation with REN().

There is currently one LBDN parameterization implemented in
RobustNeuralNetworks.jl:

(1) DenseLBDNParams parameterizes dense (fully-connected)
LBDNs with a user-defined or learnable Lipschitz bound. A
dense LBDN is effectively a Lipschitz-bounded MLP.

We intend to add ConvolutionalLBDNParams to parameterize the
convolutional LBDNs in [27] in future iterations of the package.

2.3.3 Explicit model wrappers. When training a REN or LBDN,
we learn and update the direct parameters θ and convert them to
the explicit parameters θ̄ only for model evaluation. The main con-
structors for explicit models are REN and LBDN.

Users familiar with Flux.jl will be used to creating a model once
and then training it on their data. The typical workflow is as follows.� �
using Flux

Define a model and a loss function
model = Flux . Chain (

Flux . Dense (1 => 10 , Flux . relu),
Flux . Dense (10 => 1, Flux . relu)

)

loss (model , x, y) = Flux . mse (model (x), y)

Training data of 20 batches
T = Float32
xs , ys = rand (T,1, 20), rand (T,1, 20)
data = [(xs , ys)]

Train the model for 50 epochs
opt_state = Flux . setup (Adam (0 .0 1), model)
for _ in 1: 50

Flux . train !(loss , model , data , opt_state)
end� �
When training a model constructed from REN or LBDN, we need
to back-propagate through the mapping from direct (learnable) pa-
rameters to the explicit model. We must therefore include the model
construction as part of the loss function. If we do not, then the
auto-differentiation engine has no knowledge of how the model pa-
rameters affect the loss, and will return zero gradients. Here is an
example with an LBDN, where the model is defined by the direct
parameterization stored in model_ps.� �
using Flux , RobustNeuralNetworks

Define model parameterization and loss function
T = Float32
model_ps = DenseLBDNParams {T}(1, [10], 1; nl = relu)

3

The Proceedings of the JuliaCon Conferences 7(68), 2025

function loss (model_ps , x, y)
model = LBDN (model_ps)
Flux . mse (model (x), y)

end

Training data of 20 batches
xs , ys = rand (T,1, 20), rand (T,1, 20)
data = [(xs , ys)]

Train the model for 50 epochs
opt_state = Flux . setup (Adam (0 .0 1), model_ps)
for _ in 1: 50

Flux . train !(loss , model_ps , data , opt_state)
end� �
2.3.4 Separating parameters and models. For the sake of con-
venience, we have included the model wrappers DiffREN and
DiffLBDN as alternatives to REN and LBDN, respectively. These
wrappers compute the explicit parameters each time the model is
called rather than just once when they are constructed. Any model
created with these wrappers can therefore be used exactly the same
way as a regular Flux.jl model, and there is no need for model
construction in the loss function. One can simply replace the defi-
nition of the Flux.Chain model in the Flux.jl example with� �
model_ps = DenseLBDNParams {T}(1, [10], 1; nl = relu)
model = DiffLBDN (model_ps)� �
and train the LBDN just like any other Flux.jl model. We use
these wrappers in Sections 3.1 and 3.3.

The trade-off in using DiffREN or DiffLBDN is computational ef-
ficiency in applications where a model is called many times before
a training update (e.g., reinforcement learning). The main compu-
tational bottleneck in training a REN or LBDN is converting from
the direct to explicit parameters (mapping θ 7→ θ̄). This process in-
volves a matrix inverse where the number of matrix elements scales
quadratically with the dimension of the model in a REN or the di-
mension of each layer in an LBDN (see [20, 27]). If a model is
to be evaluated many times with the same direct parameters in be-
tween training updates, it is more efficient to compute the explicit
parameters once, hold them fixed over many model calls, and only
re-compute them once the direct parameters have been updated.
This is exactly the purpose of keeping model_ps and model sep-
arate when using REN and LBDN. Note that we cannot store the di-
rect and explicit parameters in the same model object since auto-
differentiation in Julia does not support array mutation [8]. We
therefore advise using DiffREN or DiffLBDN for convenience in
applications where the model parameters are updated after just one
model call (e.g., training an image classifier). The computational
benefits of separating models from their parameterizations is ex-
plored numerically in Section 3.2.

3. Examples
This section guides the reader through a set of examples to demon-
strate how to use RobustNeuralnetworks.jl for machine learn-
ing in Julia. We will consider three examples: image classification,
reinforcement learning, and nonlinear state-observer design. These
examples will provide further insight into the benefits of using ro-
bust models and the reasoning behind key design decisions made
in the development of the package.

We use relu activation functions in all examples, but other choices
of activation function (e.g: tanh) are equally valid. We note that
any activation function used in a REN or LBDN must have a maxi-
mum slope of 1.0, as outlined in [20, 27]. For more examples with
RENs and LBDNs, please see the package documentation1.

3.1 Image classification
Our first example features an LBDN trained to classify the MNIST
dataset [13]. We will use this example to demonstrate how train-
ing image classifiers with LBDNs makes them robust to noise (and
adversarial attacks) thanks to the built-in Lipschitz bound. For a
detailed investigation of the effect of Lipschitz bounds on classifi-
cation robustness and reliability, please see [27].

3.1.1 Load the data. We begin by loading the training and test
data. MLDatasets.jl2 contains a number of common machine-
learning datasets, including the MNIST dataset. To load the full
dataset of 60,000 training images and 10,000 test images, one
would run the following code.� �
using MLDatasets : MNIST

T = Float32
x_train , y_train = MNIST (T, split =: train)[:]
x_test , y_test = MNIST (T, split =: test)[:]� �
The feature matrices x_train and x_test are three-dimensional
arrays where each 28 × 28 layer contains pixel data for a sin-
gle handwritten number from 0 to 9 (e.g., see Fig. 4). The labels
y_train and y_test are vectors containing the classification of
each image as a number from 0 to 9. We convert each of these to a
format better suited to training with Flux.jl.� �
using Flux

Reshape features for model input
x_train = Flux . flatten (x_train)
x_test = Flux . flatten (x_test)

Encode categorical outputs and store
y_train = Flux . onehotbatch (y_train , 0:9)
y_test = Flux . onehotbatch (y_test , 0:9)
data = [(x_train , y_train)]� �
Features are now stored in a 282 ×N Matrix where each column
contains pixel data from a single image, and the labels have been
converted to a 10 × N Flux.OneHotMatrix where each column
contains a 1 in the row corresponding to the image’s classification
(e.g., row 3 for an image showing the number 2) and a 0 otherwise.

3.1.2 Define a model. We can now construct an LBDN model to
train on the MNIST dataset. The larger the model, the better the
classification accuracy will be, at the cost of longer training times.
The smaller the Lipschitz bound γ, the more robust the model will
be to input perturbations (such as noise in the image). If γ is too
small, however, it can restrict the model flexibility and limit the
achievable performance [27]. For this example, we use a small net-
work of two 64-neuron hidden layers and set a Lipschitz bound of
γ = 5.0 just to demonstrate the method.

1https://acfr.github.io/RobustNeuralNetworks.jl/
2https://juliaml.github.io/MLDatasets.jl/

4

https://acfr.github.io/RobustNeuralNetworks.jl/
https://juliaml.github.io/MLDatasets.jl/

The Proceedings of the JuliaCon Conferences 7(68), 2025

� �
using RobustNeuralNetworks

Model specification
nu = 28 * 28 # Inputs (size of image)
ny = 10 # Outputs (classifications)
nh = fill (64 ,2) # Hidden layers
γ = 5 .0 f0 # Lipschitz bound 5.0

Define parameters , create model
model_ps = DenseLBDNParams {T}(nu , nh , ny , γ)
model = Chain (DiffLBDN (model_ps), Flux . softmax)� �
The model consists of two parts. The first is a callable DiffLBDN
model constructed from its direct parameterization, which is de-
fined by an instance of DenseLBDNParams as per Section 2.3.
The output is then converted to a probability distribution using a
softmax layer. Note that all AbstractLBDN models can be com-
bined with traditional neural network layers using Flux.Chain.

We could also construct the model as a chain of SandwichFC lay-
ers. Introduced in [27], the “sandwich” layer is a dense layer with
a guaranteed Lipschitz bound of 1.0. We have designed the user
interface for SandwichFC similarly to that of Flux.Dense.� �
model = Chain (

(x) -> (sqrt (γ) * x),
SandwichFC (nu => nh [1], relu ; T),
SandwichFC (nh [1] => nh [2], relu ; T),
(x) -> (sqrt (γ) * x),
SandwichFC (nh [2] => ny ; output_layer = true , T),
Flux . softmax

)� �
This model is equivalent to a dense LBDN constructed with LBDN
or DiffLBDN. We have included it as a convenience for users fa-
miliar with layer-wise network construction in Flux.jl, and rec-
ommend using it interchangeably with DiffLBDN.

3.1.3 Define a loss function. A typical loss function for training
on datasets with discrete labels is the cross entropy loss. We can
use the crossentropy loss function shipped with Flux.jl.� �
loss (model ,x,y) = Flux . crossentropy (model (x), y)� �
3.1.4 Train the model. We train the model over 600 epochs us-
ing two learning rates: 1e-3 for the first 300, and 1e-4 for the last
300. We use the Adam optimizer [11] and the default Flux.train!
method for convenience. Note that the Flux.train! method up-
dates the learnable parameters each time the model is evaluated on
a batch of data, hence our choice of DiffLBDN as a model wrapper.� �
Hyperparameters
epochs = 300
lrs = [1 e-3 ,1 e-4]

Train with the Adam optimizer
opt_state = Flux . setup (Adam (lrs [1]), model)
for k in eachindex (lrs)

for i in 1: epochs
Flux . train !(loss , model , data , opt_state)

end
Flux . adjust !(opt_state , lrs [2])

end� �

Label: 9, Prediction: 9 Label: 5, Prediction: 5 Label: 1, Prediction: 1

Fig. 4. Examples of classifications from the trained LBDN model on the
MNIST dataset.

3.1.5 Evaluate the trained model. Our final model achieves train-
ing and test accuracies of approximately 98% and 97%, respec-
tively, as shown in Table 1. We could improve this further by
switching to a convolutional LBDN, as in [27]. Some examples of
classifications given by the trained LBDN model are presented in
Figure 4.

3.1.6 Investigate robustness. The main advantage of using an
LBDN for image classification is its built-in robustness to noise (or
attacks) added to the image. This robustness is a direct benefit of
the Lipschitz bound. As outlined in the Section 2.2.3, the Lipschitz
bound effectively defines how “smooth” the network is: the smaller
the Lipschitz bound, the less the network outputs will change as
the inputs vary. For example, small amounts of noise added to the
image will be less likely to change its classification. A detailed in-
vestigation into this effect is presented in [27].

We can demonstrate the robustness of LBDNs by comparing the
model to a standard MLP built from Flux.Dense layers. We first
create a dense network with the same layer structure as the LBDN.� �
Initialisation functions
init = Flux . glorot_normal
initb (n) = Flux . glorot_normal (n)

Build a dense model
dense = Chain (

Dense (nu => nh [1], relu ;
init , bias = initb (nh [1])),

Dense (nh [1] => nh [2], relu ;
init , bias = initb (nh [2])),

Dense (nh [2] => ny ; init , bias = initb (ny)),
Flux . softmax

)� �
Training the dense model with the same training loop used for
the LBDN model results in a model that achieves training and test
accuracies of approximately 98% and 97%, respectively, as shown
in Table 1.

Table 1. Training and test accuracy for the LBDN and Dense
models on the MNIST dataset without perturbations.

Model structure Training accuracy (%) Test accuracy (%)
LBDN 98.2 97.2
Dense 97.6 96.6

As a simple test of robustness, we add uniformly-sampled random
noise in the range [−ϵ, ϵ] to the pixel data in the test dataset for
a range of noise magnitudes ϵ ∈ [0, 200/255]. We record the test
accuracy for each perturbation size and store it for plotting.

5

The Proceedings of the JuliaCon Conferences 7(68), 2025

� �
using Statistics

Get test accuracy as we add noise
uniform (x) = 2* rand (T, size (x)...) .- 1
compare (y, yh) =

maximum (yh , dims =1) .== maximum (y.* yh , dims =1)
accuracy (model , x, y) = mean (compare (y, model (x)))

function noisy_test_error (model , ϵ)
noisy_xtest = x_test .+ ϵ * uniform (x_test)
accuracy (model , noisy_xtest , y_test)* 100

end

ϵ s = T.(LinRange (0, 200 , 10)) ./ 255
lbdn_error = noisy_test_error .((model ,), ϵ s)
dense_error = noisy_test_error .((dense ,), ϵ s)� �
Plotting the results in Figure 5 very clearly shows that the dense
network, which has no guarantees on its Lipschitz bound, quickly
loses its accuracy as small amounts of noise are added to the image.
In contrast, the LBDN model maintains its accuracy even when
the (maximum) perturbation size is as much as 80% of the maxi-
mum pixel values. This is an illustration of why image classifica-
tion is such a promising use-case for LBDN models. For a more
detailed comparison of LBDN with state-of-the-art image classifi-
cation methods, see [27].

3.2 Reinforcement learning
One of the original motivations for developing the model structures
in RobustNeuralNetworks.jl was to guarantee stability and ro-
bustness in learning-based control. Recently, we have shown that
with a controller architecture based on a nonlinear version of clas-
sical Youla-Kučera parameterization [12, 29], one can learn over a
space of stabilizing controllers for linear and nonlinear systems us-
ing standard reinforcement learning techniques, so long as the con-
trol policy is parameterized by a contracting, Lipschitz-bounded
REN [28, 26, 1]. This is an exciting result for learning-based con-
trollers in safety-critical systems, such as in robotics.

In this example, we will demonstrate how to train an LBDN con-
troller with reinforcement learning (RL) for a simple nonlinear dy-
namical system. This controller will not have any stability guaran-
tees. The purpose of this example is simply to showcase the steps
required to set up RL experiments for more complex systems with
RENs and LBDNs.

Perturbation size
0.0 0.2 0.4 0.6 0.8

T
es

t a
cc

ur
ac

y
(%

)

60

70

80

90

LBDN γ=5
Dense

Fig. 5. Comparison of test accuracy on the MNIST dataset as a function of
random perturbation magnitude ϵ. The LBDN model is significantly more
robust than a standard Dense network.

Fig. 6. Mechanical system to be controlled. A box sits in a tub of fluid,
suspended between two springs, and can be pushed by a force u to different
horizontal positions q.

3.2.1 Overview. Consider the simple mechanical system shown
in Figure 6: a box of mass m sits in a tub of fluid, held between the
walls by two springs each with spring constant k/2. The box can
be pushed with a force u. Its dynamics are

mq̈ = u− kq − µq̇|q̇| (10)

where µ is the viscous damping coefficient due to the box moving
through the fluid, and q̇, q̈ denote the velocity and acceleration of
the box, respectively.

We can write this as a (nonlinear) state-space model with state x =
(q, q̇)⊤, control input u, and dynamics

ẋ = f(x, u) :=

[
q̇

(u− kq − µq̇|q̇|)/m

]
. (11)

This is a continuous-time model of the dynamics. For our purposes,
we need a discrete-time model. We can discretize the dynamics us-
ing a forward Euler approximation to get

xt+1 = fd(xt, ut) := xt +∆t · f(xt, ut) (12)

where ∆t is the time-step. This approximation typically requires
a small time-step for numerical stability, but is sufficient for our
simple example. If physical accuracy was of concern, one could
use a fourth (or higher) order Runge-Kutta scheme.

Our aim is to learn a controller u = Kθ(x, qref), defined by some
learnable parameters θ, that can push the box to any goal position
qref that we choose. Specifically, we want the box to:

(1) reach a (stationary) goal position qref

(2) within a time period T .

The force required to keep the box at a static equilibrium position
qref is uref = kqref from Equation 10. We can encode these objec-
tives into a cost function Jθ and write our RL problem as

min
θ

E [Jθ] , Jθ =

T−1∑
t=0

c1(∆qt)
2 + c2q̇

2
t + c3(∆ut)

2 (13)

where ∆qt = qt − qref , ∆ut = ut − uref , c1, c2, c3 are cost func-
tion weights, and the expectation is over different initial and goal
positions of the box.

3.2.2 Problem setup. We start by defining the properties of our
system and translating the dynamics into Julia code. For this exam-
ple, we consider a box of mass m = 1, spring constants k = 5,
and a viscous damping coefficient µ = 0.5. We will simulate the
system over T = 4 s time horizons with a time-step of ∆t = 0.02 s.� �
m = 1 # Mass (kg)
k = 5 # Spring constant (N/m)
µ = 0 .5 # Viscous damping (kg /m)
Tmax = 4 # Simulation horizon (s)
dt = 0 .0 2 # Time step (s)
ts = 1: Int (Tmax / dt) # Array of time indices� �

6

The Proceedings of the JuliaCon Conferences 7(68), 2025

Now we can generate the training data. Suppose the box always
starts at rest from the zero position, and the goal position can be
anywhere in the range qref ∈ [−1, 1]. Our training data consists of
a batch of 80 randomly-sampled goal positions and corresponding
reference forces uref .� �
nx , nref , batches = 2, 1, 80
x0 = zeros (nx , batches)
qref = 2* rand (nref , batches) .- 1
uref = k* qref� �
It is good practice (and faster) to simulate all simulation batches at
once, so we define our dynamics functions to operate on batches
of states and controls. Each row corresponds to a different state or
control, and each column corresponds to a simulation for a partic-
ular goal position.� �
f(x:: Matrix ,u:: Matrix) = [x[2:2,:]; (u[1:1,:] -

k*x[1:1,:] - µ*x[2:2,:]* abs .(x[2:2,:]))/m]
fd (x:: Matrix ,u:: Matrix) = x + dt *f(x,u)� �
RL problems typically involve simulating the system over some
time horizon and collecting rewards or costs at each time step.
Control policies are trained using approximations of the cost
gradient ∇Jθ , as it is often difficult (or impossible) to com-
pute the exact gradient due to the complexity of dynamics sim-
ulators. We refer the reader to [23] for further details, and
ReinforcementLearning.jl [24] for examples in Julia.

For this simple example, we can back-propagate directly through
the dynamics function fd(x,u) rather than approximating ∇Jθ .
The simulator below takes a batch of initial states, goal positions,
and a controller model whose inputs are [x; qref]. It computes tra-
jectories of states and controls z = {[x0;u0], . . . , [xT−1;uT−1]}.
To avoid the issue of unsupported array mutation when differenti-
ating we use a Zygote.Buffer to iteratively store the outputs [8].� �
using Zygote : Buffer

function rollout (model , x0 , qref)
z = Buffer ([zero ([x0 ; qref])], length (ts))
x = x0
for t in ts

u = model ([x; qref])
z[t] = vcat (x,u)
x = fd (x,u)

end
return copy (z)

end� �
After computing these trajectories, we will need a function to eval-
uate the cost given some weightings c1, c2, c3.� �
using Statistics

weights = [10 ,1,0 .1]
function _cost (z, qref , uref)

∆z = z .- [qref ; zero (qref); uref]
return mean (sum (weights .* ∆z.ˆ2; dims =1))

end
cost (z:: AbstractVector , qref , uref) =

mean (_cost .(z, (qref ,), (uref ,)))� �

3.2.3 Define a model. We will train an LBDN controller with a
Lipschitz bound of γ = 20. Its inputs are the state xt and goal
position qref , while its outputs are the control force ut. We have
chosen a model with two hidden layers each of 32 neurons just as
an example. For examples of how Lipschitz bounds can be useful
in learning robust controllers, see [2, 21].� �
using RobustNeuralNetworks

T = Float64
γ = 20 # Lipschitz bound
nu = nx + nref # Inputs (x and reference)
ny = 1 # Outputs (control action)
nh = fill (32 , 2) # Hidden layers
model_ps = DenseLBDNParams {T}(nu , nh , ny , γ)� �
3.2.4 Define a loss function. In constructing a loss function for
this problem, we refer to Section 2.3.3. The model_ps contain
all information required to define a dense LBDN model. However,
model_ps is not a model that can be evaluated on data: it is a model
parameterization, and contains the learnable parameters θ. To train
an LBDN given some data, we construct the model within the loss
function using the LBDN wrapper so that the mapping from direct to
explicit parameters is captured during back-propagation. Our loss
function therefore includes the following three components.� �
function loss (model_ps , x0 , qref , uref)

model = LBDN (model_ps) # Model
z = rollout (model , x0 , qref) # Simulation
return cost (z, qref , uref) # Cost

end� �
3.2.5 Train the model. Having set up the RL problem, all that re-
mains is to train the controller. The function below trains a model
and keeps track of the training loss tloss (cost Jθ) for each sim-
ulation in our batch of 80. Training is performed with the Adam
optimizer over 250 epochs with a learning rate of 10−3.� �
using Flux

function train_box_ctrl !(
model_ps , loss_func ;
epochs = 250 , lr =1 e-3

)
costs = Vector { Float64 }()
opt_state = Flux . setup (Adam (lr), model_ps)
for k in 1: epochs

tloss , dJ = Flux . withgradient (
loss_func , model_ps , x0 , qref , uref)

Flux . update !(opt_state , model_ps , dJ [1])
push !(costs , tloss)

end
return costs

end

costs = train_box_ctrl !(model_ps , loss)� �
3.2.6 Evaluate the trained model. We may now verify the perfor-
mance of the trained model on a new set of reference positions. In
the code below, we generate 60 batches of test data. In each one,
the box starts at the origin at rest, and is moved through the fluid
to a different (random) goal position qref ∈ [−1, 1]. We plot the

7

The Proceedings of the JuliaCon Conferences 7(68), 2025

Training epochs
0 100 200

C
os

t

2

4

6

Time (s))
1 2 3 4

P
os

iti
on

 e
rr

or
 (

m
)

-1.0

-0.5

0.0

0.5

1.0

Time (s))
1 2 3 4

V
el

oc
ity

 (
m

/s
)

-1

0

1

Time (s)
1 2 3 4

C
on

tr
ol

 e
rr

or
 (

N
)

-2.5

0.0

2.5

Fig. 7. Loss curve and simulation results from the LBDN RL policy con-
trolling the box system in Figure 6. The LBDN policy can push the box to
any desired location in the domain of interest. The position and controller
errors are ∆q and ∆u from Equation 13, respectively.

states and controls alongside the loss curve from training in Figure
7. The box clearly moves to the required position within the time
frame in all cases, experimentally verifying the performance of our
controller.� �
model = LBDN (model_ps)
x0_test = zeros (2, 60)
qr_test = 2* rand (1, 60) .- 1
z_test = rollout (model , x0_test , qr_test)� �
3.2.7 Advantages of separate parameters and models. As dis-
cussed in Section 2.3.4, there is a trade-off between convenience
and performance in RobustNeuralNetworks.jl. The DiffLBDN
and DiffREN wrappers exist to allow users to train robust models
in a Flux.jl-like manner. These wrappers convert a model param-
eterization to its explicit form each time they are called, hence the
user does not have to re-construct the model in the loss function.� �
loss2 (model , x0 , qref , uref) =

cost (rollout (model , x0 , qref), qref , uref)� �
The cost is computation speed, particular in an RL context. Care-
ful inspection of the rollout() function shows that the model is
evaluated many times within the loss function before the learnable
parameters are updated with Flux.update!(). As discussed in the
Section 2.3.4, the major computational bottleneck in training RENs
and LBDNs is the conversion from learnable (direct) parameters to
an explicit model. Constructing the model only when the parame-
ters are updated therefore saves considerably on computation time,
particularly for large models.

For example, suppose we train single-hidden-layer LBDNs with
n = 2, 22, . . . , 29 neurons over 100 epochs on our box RL prob-
lem, and log the time taken to train each model when using both
LBDN and DiffLBDN.

� �
function lbdn_compute_times (n; epochs = 100)

Build model params and a model
lbdn_ps = DenseLBDNParams {T}(nu , [n], ny , γ)
diff_lbdn = DiffLBDN (deepcopy (lbdn_ps))

Time with LBDN vs DiffLBDN (respectively)
t_lbdn = @elapsed (

train_box_ctrl !(lbdn_ps , loss ; epochs))
t_diff_lbdn = @elapsed (

train_box_ctrl !(diff_lbdn , loss2 ; epochs))
return [t_lbdn , t_diff_lbdn]

end

Evaluate computation time
Run it once first for just -in - time compiler
ns = 2 .ˆ (1:9)
lbdn_compute_times (2; epochs =1)
comp_times = reduce (hcat , lbdn_compute_times .(ns))� �
The results are plotted in Figure 8. Even for a single-layer LBDN
with 29 = 512 neurons, it is clear that using DiffLBDN takes
an order of magnitude longer to train than only constructing the
LBDN model each time the loss() function is called. If we were
training dynamic models with REN, the computational overhead
of using DiffREN instead of REN would be even more extreme,
since the conversion from direct to explicit parameters in a REN
is typically more computationally expensive than for LBDNs. It is
for this reason that we strongly recommend using the LBDN and
REN wrappers if many evaluations of the model are required before
Flux.update!() (or equivalent) is called, as in RL.

Hidden layer size
21 22 23 24 25 26 27 28 29

T
ra

in
in

g
tim

e
(s

)
(1

00
 e

po
ch

s)

101

102

103
LBDN
DiffLBDN

Fig. 8. Training time as a function of hidden-layer size for a single-
hidden-layer LBDN constructed with both the LBDN and DiffLBDN wrap-
pers. Using the LBDN wrapper for RL is significantly more efficient than re-
constructing the explicit model at every evaluation of the DiffLBDN model.

3.3 Observer design
In Section 3.2, we designed a controller for a simple nonlinear sys-
tem assuming that the controller had full state knowledge: that is,
it had access to both the position and velocity of the box. In many
practical situations, we may only be able to measure some of the
system states. For example, our box may have a camera to estimate
its position but not its velocity. In these cases, we need a state ob-
server to estimate the full state of the system for feedback control.

In this example, we will show how a contracting REN can be used
to learn stable observers for dynamical systems. A common ap-

8

The Proceedings of the JuliaCon Conferences 7(68), 2025

proach to designing state estimators for nonlinear systems is the Ex-
tended Kalman Filter (EKF). In our case, we will consider observer
design as a supervised learning problem. For a detailed explanation
of the theory behind learning state observers, and for a similar ex-
ample designing an observer for a Partial Differential Equations
(PDE), please refer to Section VIII of [20].

3.3.1 Background theory. We briefly summarise some back-
ground theory from [20] relevant to this example. Suppose we have
a discrete-time, nonlinear dynamical system of the form

xt+1 = fd(xt, ut) (14)
yt = gd(xt, ut) (15)

with state vector xt, controlled inputs ut, and measured outputs yt.
Our aim is to estimate the sequence {x0, x1, . . . , xT } over some
time period [0, T] given only the measurements yt and inputs ut at
each time step. We will use a very general form for an observer

x̂t+1 = fo(x̂t, ut, yt) (16)

where x̂t is the state estimate. A more common (but more restric-
tive) structure is the well-known Luenberger observer [15].

To estimate the true state, our observer error (xt − x̂t) must con-
verge to zero as time progresses, or x̂t → xt as t → ∞. As out-
lined in [20], our observer only has to satisfy the following two
conditions to guarantee this.

(1) The observer must be a contracting system (Sec. 2.2.1).

(2) The observer must satisfy a “correctness” condition which says
that, given perfect knowledge of the state, measurements, and
inputs, the observer can exactly predict the next state. Mathe-
matically, we write this as

fo(xt, ut, yt) = fd(xt, ut) (17)

where yt = gd(xt, ut). Note the use of xt not x̂t. It turns out
that if the correctness condition is only approximately satis-
fied such that |fo(xt, ut, yt)− fd(xt, ut)| < ρ for some small
number ρ ∈ R, then the observer error will still be bounded.
See Appendix E of [20] for details.

The first condition, contraction, is already guaranteed for all REN
models in RobustNeuralNetworks.jl. Therefore, to learn a sta-
ble observer with RENs, our only requirement is to minimise
the one-step-ahead prediction error to approximate the correct-
ness condition. If we have a batch of data z = {xi, ui, yi, i =
1, 2, . . . ,N}, this corresponds to minimising the loss function

L(z, θ) =
N∑
i=1

|fo(xi, ui, yi)− fd(xi, ui)|2, (18)

where θ contains the learnable parameters of the REN.

3.3.2 Generate training data. Consider the same nonlinear box
system from Section 3.2, with the a change in setup so that we
can only measure the box position. We introduce a measurement
function gd() such that yt = xt.� �
m = 1 # Mass (kg)
k = 5 # Spring constant (N/m)
µ = 0 .5 # Viscous damping (kg /m)
nx = 2 # Number of states

f(x:: Matrix ,u:: Matrix) = [x[2:2,:]; (u[1:1,:] -
k*x[1:1,:] - µ*x[2:2,:]* abs .(x[2:2,:]))/m]

fd (x,u) = x + dt *f(x,u)
gd (x:: Matrix) = x[1:1,:]� �
For this example, we assume that the box always starts at rest in a
random initial position between ±0.5m, after which it is released
and allowed to oscillate freely with no added forces (so u = 0).
Learning an observer typically requires a large amount of training
data to fully capture the behaviour of the system, hence we consider
200 batches each simulating 10 s of motion.� �
Tmax = 10 # Simulation horizon
dt = 0 .0 1 # Time step (s)
ts = 1: Int (Tmax / dt) # Time array indices

Generate batches of training data
batches = 200
u = fill (zeros (1, batches), length (ts)-1)
X = fill (zeros (1, batches), length (ts))
X[1] = 0 .5 *(2* rand (nx , batches) .- 1)

for t in ts [1: end -1]
X[t+1] = fd (X[t],u[t])

end� �
We have stored the states of the system across each batch in X. To
compute the one-step-ahead loss L, we will need to separate this
data into the states at the “current” time step Xt and at the “next”
time step Xn, then compute the measurement outputs. We then store
the data for training, shuffling it so there is no bias in the training
towards earlier time steps.� �
using Random

Current / next state , measurements
Xt = X[1: end -1]
Xn = X[2: end]
y = gd .(Xt)

Store training data
obsv_data = [[ut ; yt] for (ut , yt) in zip (u, y)]
indx = shuffle (1: length (obsv_data))
data = zip (Xn [indx], Xt [indx], obsv_data [indx])� �
3.3.3 Define a model. We can construct the parameterization for
a contracting REN model using ContractingRENParams. The in-
puts to the model are [ut; yt], and its outputs are the next state esti-
mate x̂t+1. The flag output_map=false sets the output map of the
REN to just return its own internal state – i.e., C2 = I , D21 = 0,
D22 = 0, by = 0 from Equation 4. This makes the internal state of
the REN exactly the state estimate x̂t.� �
using RobustNeuralNetworks

T = Float32
nv = 200
nu = size (obsv_data [1], 1)
ny = nx
model_ps = ContractingRENParams {T}(

nu , nx , nv , ny ; output_map = false)
model = DiffREN (model_ps)� �

9

The Proceedings of the JuliaCon Conferences 7(68), 2025

3.3.4 Define a loss function. As outlined in Section 3.3.1, our
loss function should be the one-step-ahead prediction error of the
REN observer. We write this as follows, noting that all subtypes
of AbstractREN return both their updated internal state and their
output (in that order).� �
using Statistics

function loss (model , xn , xt , inputs)
xpred = model (xt , inputs)[1]
return mean (sum ((xn - xpred).ˆ2, dims =1))

end� �
3.3.5 Train the model. The function below trains the observer
with the Adam optimizer over 100 epochs and decreases the max-
imum learning rate from 10−3 to 10−4 if the mean loss stops de-
creasing between epochs. The core of this function is a simple
Flux.jl training loop, expanded out for clarity.� �
using Flux

function train_observer !(
model , data ;
epochs = 50 , lr =1 e-3 , min_lr =1 e-6

)
opt_state = Flux . setup (Adam (lr), model)
mean_loss = [1 e5]
for epoch in 1: epochs

Gradient descent update
batch_loss = []
for (xn , xt , inputs) in data

tloss , dJ = Flux . withgradient (
loss , model , xn , xt , inputs)

Flux . update !(opt_state , model , dJ [1])
push !(batch_loss , tloss)

end

Reduce lr if loss is stuck or growing
push !(mean_loss , mean (batch_loss))
if (mean_loss [end] >= mean_loss [end -1]) &&

(lr > min_lr)
lr *= 0 .1
Flux . adjust !(opt_state , lr)

end
end
return mean_loss

end
tloss = train_observer !(model , data)� �
3.3.6 Evaluate the trained model. We have trained the REN ob-
server to minimise the one-step-ahead prediction error, but we are
yet to test whether the the observer error actually does converge to
zero. We set up the following 50 batches of test data as a demon-
stration.� �
batches = 50
ts_test = 1: Int (20 / dt)
u_test = fill (zeros (1, batches), length (ts_test))
x_test = fill (zeros (nx , batches), length (ts_test))
x_test [1] = 0 .2 *(2* rand (nx , batches) .-1)

for t in ts_test [1: end -1]
x_test [t+1] = fd (x_test [t], u_test [t])

end
y_test = gd .(x_test)
obsv_in = [[u;y] for (u,y) in zip (u_test , y_test)]� �

Fig. 9. Simulation results showing the observer predictions and observer
error with the box starting at 50 different initial conditions. The left panels
compare the true (grey) and estimated (red) states, while the right panels
show the observer error x − x̂ over time. The observer error converges for
all 50 test cases.

Next, we need a function to simulate the REN observer using its
own state x̂t rather than the true system state xt, which was used
for training. We use the very neat tool Flux.Recur for this. We
assume that the observer has no knowledge of the initial state and
simply guesses x̂0 = 0 for all 50 batches.� �
function simulate (model :: AbstractREN , x0 , u)

recurrent = Flux . Recur (model , x0)
output = recurrent .(u)
return output

end
x0hat = zeros (model . nx , batches)
xhat = simulate (model , x0hat , obsv_in)� �
The results are plotted in Figure 9. In the left-hand panels, the ob-
server predictions (red) almost exactly match the true states (grey)
after approximately 4 s. This is confirmed by the right-hand panels,
which show the observer error xt− x̂t smoothly converging to zero
as the observer estimates the correct states for all simulations.

It is worth noting that at no point did we directly train the REN
to minimise the observer error. This is a natural result of using a
model that is guaranteed to be contracting, and training it to min-
imise the one-step-ahead prediction error. There is still some resid-
ual observer error in the velocity in Figure 9, since our observer
was only trained to approximately satisfy the correctness condition.
However, this could easily be reduced or eliminated using a larger
observer model, more training data, and more training epochs.

4. Summary and conclusions
This paper has presented RobustNeuralNetworks.jl, a Ju-
lia package for robust machine learning based on the recently-
proposed Recurrent Equilibrium Network (REN) and Lipschitz-
Bounded Deep Network (LBDN) model classes. The models are
unique in that they naturally satisfy a set of built-in robustness met-
rics, such as contraction and Lipschitz bounds. We have presented
an overview of the model architectures, including background the-
ory on robustness metrics in nonlinear systems, and have outlined
the package structure and its usage alongside Julia’s main machine-

10

The Proceedings of the JuliaCon Conferences 7(68), 2025

learning library, Flux.jl. We have demonstrated via examples in
image classification, reinforcement learning, and observer design
that the package is easy to use in many common machine learning
and data-driven control problems, while also offering the advantage
of robustness guarantees.

We intend RobustNeuralNetworks.jl to be widely-applicable
in the scientific and machine learning communities for learning-
based problems in which robustness certificates are crucial, and
have already used the package in our own research in robust re-
inforcement learning [1]. Some areas in which this package will
be most applicable include: data-driven control and state estima-
tion, image classification and segmentation, and privacy and se-
curity. We intend to expand the package with more robust neural
network architectures in the future. Examples include LBDNs with
one-dimensional convolution [18] and circular convolutions [27],
continuous-time REN models [16], and RENs respecting other non-
Euclidean contraction metrics [5]. We encourage any and all contri-
butions to RobustNeuralNetworks.jl to further its use in robust
machine learning problems.

Acknowledgements. This work was supported in part by the Aus-
tralian Research Council (DP190102963).

5. References
[1] Nicholas H. Barbara, Ruigang Wang, and Ian R. Manch-

ester. Learning over contracting and lipschitz closed-loops for
partially-observed nonlinear systems. 2023 62nd IEEE Con-
ference on Decision and Control (CDC), pages 1028–1033,
12 2023. doi:10.1109/CDC49753.2023.10383269.

[2] Nicholas H. Barbara, Ruigang Wang, and Ian R. Manchester.
On robust reinforcement learning with lipschitz-bounded pol-
icy networks. 5 2024. doi:10.48550/arXiv.2405.11432.

[3] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B
Shah. Julia: A fresh approach to numerical computing. SIAM
Review, 59:65–98, 2017. doi:10.1137/141000671.

[4] Jing Cheng, Ruigang Wang, and Ian R. Manchester. Learn-
ing stable and passive neural differential equations, 2024.
doi:10.48550/arXiv.2404.12554.

[5] Alexander Davydov, Saber Jafarpour, and Francesco Bullo.
Non-euclidean contraction theory for robust nonlinear stabil-
ity. IEEE Transactions on Automatic Control, 67:6667–6681,
12 2022. doi:10.1109/TAC.2022.3183966.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. Proceedings of
the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2016-December:770–778, 12 2016.
doi:10.1109/CVPR.2016.90.

[7] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan,
and Pieter Abbeel. Adversarial attacks on neural network
policies. International Conference on Learning Representa-
tions, ICLR, 2017.

[8] Michael Innes. Don’t unroll adjoint: Differentiating ssa-form
programs. CoRR, abs/1810.07951, 2018.

[9] Mike Innes. Flux: Elegant machine learning with julia. Jour-
nal of Open Source Software, 2018. doi:10.21105/joss.00602.

[10] Neelay Junnarkar, He Yin, Fangda Gu, Murat Arcak, and
Peter Seiler. Synthesis of stabilizing recurrent equilibrium

network controllers. Proceedings of the IEEE Conference
on Decision and Control, 2022-December:7449–7454, 2022.
doi:10.1109/CDC51059.2022.9992684.

[11] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations, ICLR, 12 2015.

[12] Vladimír Kučera. Stability of discrete linear feedback sys-
tems. IFAC Proceedings Volumes, 8:573–578, 8 1975.
doi:10.1016/S1474-6670(17)67787-5.

[13] Yann LeCun, Corinna Cortes, and C J Burges. Mnist
handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

[14] Winfried Lohmiller and Jean Jacques E. Slotine. On contrac-
tion analysis for non-linear systems. Automatica, 34:683–696,
6 1998. doi:10.1016/S0005-1098(98)00019-3.

[15] David G. Luenberger. An introduction to observers. IEEE
Transactions on Automatic Control, 16:596–602, 1971.
doi:10.1109/TAC.1971.1099826.

[16] Daniele Martinelli, Clara Lucía Galimberti, Ian R. Manch-
ester, Luca Furieri, and Giancarlo Ferrari-Trecate. Uncon-
strained parametrization of dissipative and contracting neural
ordinary differential equations. Proceedings of the IEEE Con-
ference on Decision and Control, pages 3043–3048, 2023.
doi:10.1109/CDC49753.2023.10383704.

[17] Alexandre Megretski and Anders Rantzer. System analysis
via integral quadratic constraints. IEEE Transactions on Au-
tomatic Control, 42:819–830, 1997. doi:10.1109/9.587335.

[18] Patricia Pauli, Dennis Gramlich, and Frank Allgöwer. Lip-
schitz constant estimation for 1d convolutional neural net-
works. In Nikolai Matni, Manfred Morari, and George J. Pap-
pas, editors, Proceedings of The 5th Annual Learning for Dy-
namics and Control Conference, volume 211 of Proceedings
of Machine Learning Research, pages 1321–1332. PMLR,
15–16 Jun 2023.

[19] Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler,
and Frank Allgower. Training robust neural networks using
lipschitz bounds. IEEE Control Systems Letters, 6:121–126,
2022. doi:10.1109/LCSYS.2021.3050444.

[20] Max Revay, Ruigang Wang, and Ian R. Manchester.
Recurrent equilibrium networks: Flexible dynamic
models with guaranteed stability and robustness. IEEE
Transactions on Automatic Control, pages 1–16, 2023.
doi:10.1109/TAC.2023.3294101.

[21] Alessio Russo and Alexandre Proutiere. Towards optimal
attacks on reinforcement learning policies. Proceedings of
the American Control Conference, 2021-May:4561–4567, 5
2021. doi:10.23919/ACC50511.2021.9483025.

[22] Jonah Siekmann, Yesh Godse, Alan Fern, and Jonathan Hurst.
Sim-to-real learning of all common bipedal gaits via periodic
reward composition. Proceedings - IEEE International Con-
ference on Robotics and Automation, 2021-May:9943–9949,
2021. doi:10.1109/ICRA48506.2021.9561814.

[23] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, second edition,
2018.

11

http://dx.doi.org/10.1109/CDC49753.2023.10383269
http://dx.doi.org/10.48550/arXiv.2405.11432
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.48550/arXiv.2404.12554
http://dx.doi.org/10.1109/TAC.2022.3183966
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.21105/joss.00602
http://dx.doi.org/10.1109/CDC51059.2022.9992684
http://dx.doi.org/10.1016/S1474-6670(17)67787-5
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1109/TAC.1971.1099826
http://dx.doi.org/10.1109/CDC49753.2023.10383704
http://dx.doi.org/10.1109/9.587335
http://dx.doi.org/10.1109/LCSYS.2021.3050444
http://dx.doi.org/10.1109/TAC.2023.3294101
http://dx.doi.org/10.23919/ACC50511.2021.9483025
http://dx.doi.org/10.1109/ICRA48506.2021.9561814

The Proceedings of the JuliaCon Conferences 7(68), 2025

[24] Jun Tian and other contributors. Reinforcementlearn-
ing.jl: A reinforcement learning package for the ju-
lia programming language. 2020. [Online]. Available:
https://github.com/JuliaReinforcementLearning/
ReinforcementLearning.jl.

[25] Arjan van der Schaft. L2-Gain and Passivity Techniques in
Nonlinear Control. Springer International Publishing, 3 edi-
tion, 2017. doi:10.1007/978-3-319-49992-5.

[26] Ruigang Wang, Nicholas H. Barbara, Max Revay, and
Ian R. Manchester. Learning over all stabilizing non-
linear controllers for a partially-observed linear sys-
tem. IEEE Control Systems Letters, pages 1–1, 2022.
doi:10.1109/LCSYS.2022.3184847.

[27] Ruigang Wang and Ian Manchester. Direct parameteriza-
tion of lipschitz-bounded deep networks. volume 202, pages
36093–36110. PMLR, 7 2023.

[28] Ruigang Wang and Ian R. Manchester. Youla-ren:
Learning nonlinear feedback policies with robust
stability guarantees. Proceedings of the American
Control Conference, 2022-June:2116–2123, 2022.
doi:10.23919/ACC53348.2022.9867842.

[29] Dante C. Youla, Joseph J. Bongiorno, and Hamid A. Jabr.
Modern wiener-hopf design of optimal controllers — part
ii: The multivariable case. IEEE Transactions on Automatic
Control, 21:319–338, 1976. doi:10.1109/TAC.1976.1101223.

12

https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl
https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl
http://dx.doi.org/10.1007/978-3-319-49992-5
http://dx.doi.org/10.1109/LCSYS.2022.3184847
http://dx.doi.org/10.23919/ACC53348.2022.9867842
http://dx.doi.org/10.1109/TAC.1976.1101223

	Introduction
	Package overview
	What are RENs and LBDNs?
	Robustness metrics and IQCs
	Contracting systems
	Incremental IQCs
	Lipschitz bounds (smoothness)
	Incremental passivity

	Direct and explicit parameterizations
	Implementation
	Types of direct parameterizations
	Explicit model wrappers
	Separating parameters and models

	Examples
	Image classification
	Load the data
	Define a model
	Define a loss function
	Train the model
	Evaluate the trained model
	Investigate robustness

	Reinforcement learning
	Overview
	Problem setup
	Define a model
	Define a loss function
	Train the model
	Evaluate the trained model
	Advantages of separate parameters and models

	Observer design
	Background theory
	Generate training data
	Define a model
	Define a loss function
	Train the model
	Evaluate the trained model

	Summary and conclusions
	References

