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ABSTRACT
JSOSuite.jl is a new Julia package offering a user-friendly in-
terface for continuous nonlinear optimization. The solvers available
cover unconstrained to generally-constrained, and least-squares
problems. This new package caters to practitioners as it does not
require an understanding of the inner mechanism of solvers, but in-
stead performs a cursory analysis of the problem to match it with
an appropriate solver.
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1. Introduction
JSOSuite.jl is a Julia [2] package to find a local solution of con-
tinuous nonlinear optimization problems of the form

minimize
x∈Rn

f(x) subject to cL ≤ c(x) ≤ cU , ℓ ≤ x ≤ u, (1)

where f : Rn → R and c : Rn → Rm are continuously dif-
ferentiable, with cL ∈ (R ∪ {−∞})m, cU ∈ (R ∪ {+∞})m,
ℓ ∈ (R ∪ {−∞})n, and u ∈ (R ∪ {+∞})n. Bounds on the vari-
ables appear separately from other types of constraints because nu-
merical methods often treat them differently.

2. Statement of need
JSOSuite.jl is part of the JuliaSmoothOptimizers (JSO) ecosys-
tem, an academic organization that offers a collection of Julia pack-
ages for nonlinear optimization software development, testing, and
benchmarking.
JSO provides a general API for solvers to interact with models
by providing flexible data types to represent the objective and
constraint functions, evaluate their derivatives, and provide essen-
tially any information that a solver might request from a model.
NLPModels.jl [15] is the core package that defines the type
AbstractNLPModel and introduces the API, including in-place
and out-of-place evaluation of the objective gradient, sparse Jaco-
bian and Hessian matrices as well as operators for matrix-free im-
plementations. The user can hand-code derivatives, use automatic
differentiation [8], or JSO interfaces to optimization modeling lan-
guages such as AMPL [6] or JuMP [4]. Hence, solvers can be de-
signed to rely on the API’s independently of the problem’s origin.
JSO defines a minimal set of rules for a solver to be compliant:

(i) The input is an instance of AbstractNLPModel; (ii) the out-
put is a GenericExecutionStats [12], that contains the solution,
optimal value, primal and dual feasibility, elapsed time, etc. There
are a growing number of JSO-compliant solvers accessible from
registered Julia packages for unconstrained and bound-constrained
problems [5, 11], equality-constrained problems [9, 10, 14], and
problems of the form (1) in [1, 17]. Most of those solvers also have
variants for nonlinear least squares. A solver for convex quadratic
programs is in RipQP.jl [13]. The solvers mentioned are pure
Julia implementations, but there also exist thin wrappers to well-
established solvers such as Artelys Knitro [3] and Ipopt [18].
There exist other packages in Julia that bring together multi-
ple solvers. If (1) can be modeled using JuMP, the model may
be passed to solvers compatible with MathOptInterface.jl
[7]. Optimization.jl aims to unify local and global optimiza-
tion packages into a single interface. It adds high-level features,
such as integration with automatic differentiation. The aim of
JSOSuite.jl is to provide an interface for navigating among the
JSO-compliant solvers and selecting the best one without needing
to know all of them. There is a strong emphasis on justifying the
choice of solvers, which helps the overall engineering process from
application to modeling and solving a problem. Connecting mod-
eling tools and solvers into a unique entry point simplifies proto-
typing and choosing the right solver. Moreover, it helps connect
up-to-date solvers to other optimization wrappers and applications.

3. Functionalities
The main function exported by JSOSuite.jl is minimize, which,
given an instance of AbstractNLPModel, selects an appropriate
solver and locally minimizes the problem, e.g. Code 1.

Code 1: minimize takes any NLPModels compatible input.� �
1 using OptimizationProblems , JSOSuite
2 nlp = OptimizationProblems . PureJuMP . kirby2 ()
3 stats = minimize ( nlp )� �

Internally, a DataFrame, JSOSuite.optimizers, contains all
the useful information regarding each solver such as its name,
package of origin, highest derivative used, type of problems han-
dled, whether it accepts arbitrary arithmetic types, etc. The func-
tion JSOSuite.select_optimizers analyzes an instance of
AbstractNLPModel and returns a DataFrame with the available
solvers, along with the information that guided their selection.
The solvers are then selected by identifying the arithmetic type,
type of constraints (unconstrained, bound-constrained, equality-
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constrained, inequalities, linear/nonlinear), objective function (lin-
ear, quadratic, linear/nonlinear least squares, nonlinear), and high-
est accessible derivative (1st order, 2nd order, or 2nd order matrix-
free). Finally, the user can either choose to call minimize with
the appropriate solver or use the corresponding package directly.
The current strategy is to select the most specialized solver. Fur-
ther heuristics are being researched to improve the selection pro-
cess when multiple solvers are available for a given problem.
An important feature common to most JSO-compliant solvers is the
possibility to run in-place solve, i.e., it is possible to pre-allocate
the output and the storage used during the iterations to run the op-
timizer allocation free; see Code 2. This is of great interest as it
shows memory efficiency and allows re-solving problems without
storage overhead.

Code 2: JSOSuite.solve! can be used to re-solve without addi-
tional memory allocation.� �

1 using NLPModelsTest , Percival , SolverCore
2 nlp = NLPModelsTest . HS6 ()
3 solver = PercivalSolver ( nlp )
4 stats = GenericExecutionStats ( nlp )
5 solve !( solver , nlp , stats )
6 SolverCore . reset !( solver )
7 @allocated solve !( solver , nlp , stats ) # = 0� �

A list of parameters common to all JSO-compliant solvers is
maintained, and can be passed to minimize. Combined with
SolverBenchmark.jl [16], it can seamlessly compare algorithms
and generate data and performance profiles on collection of test
problems. Additionally, the package implements strategies that are
classical for continuous optimization solvers such as methods to
find a feasible initial guess or run a multi-start strategy. The docu-
mentation of the package https://jso.dev/JSOSuite.jl con-
tains further examples of these functionalities.

4. Concluding remarks
Julia’s JIT compiler is ideal for efficient scientific computing and
optimization software, making it a natural choice for developing
new solvers. The JuliaSmoothOptimizers organization provides a
comprehensive set of tools for large-scale continuous optimization,
designed for ease of use by practitioners, researchers, and devel-
opers. Actively maintained and constantly evolving, these tools in-
clude links to cutting-edge external solvers and implementations
of promising new ones. JSOSuite.jl builds on these features to
offer a user-friendly interface that simplifies solver selection and
problem-solving in research-level continuous optimization.
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