
Dionysos.jl: a Modular Platform for Smart Symbolic Control
Julien Calbert1, Adrien Banse1, Benoît Legat1, and Raphaël M. Jungers1

1ICTEAM, UCLouvain

ABSTRACT
We introduce Dionysos.jl, a modular package for solving opti-
mal control problems for complex dynamical systems using state-
of-the-art and experimental techniques from symbolic control, op-
timization, and learning. More often than not with Cyber-Physical
systems, the only sensible way of developing a controller is by dis-
cretizing the different variables, thus transforming the control task
into a purely combinatorial problem on a finite-state mathemati-
cal object, called an abstraction of this system. Although this ap-
proach offers a safety-critical framework, the available techniques
suffer important scalability issues. In order to render these tech-
niques practical, it is necessary to construct smarter abstractions
that differ from classical techniques by partitioning the state-space
in a non trivial way.

Keywords
Systems and Control, Symbolic Models, Smart abstractions

1. Introduction
In our modern world, the control systems are increasingly com-
plex (think of smart grids, autonomous cars, robots and the inter-
net of things). These systems are at the center of a paradigm shift
coined as the cyber-physical revolution by the industrial and aca-
demic communities [25, 2, 27]. The industry currently applies clas-
sical control techniques even if their requirements are no longer
met for these systems. This causes a loss of efficiency and a lack
of guarantees that are crucial in view of the importance of safety in
such systems [5]. As a consequence, many key technological appli-
cations run nowadays at sub-optimal regimes.

Formal verification frameworks have been developed using bar-
rier certificates [36, 37] that system trajectories cannot cross, or
using reachability analysis [1] to identify potential states that a sys-
tem can reach. Reachability analysis involves computing an over-
approximation of the set of reachable states, which can be done
using the toolbox JuliaReach [10], for example. However, these
techniques are mainly focused on verification, and are restricted
to some classes of dynamical systems. In contrast, a renowned
approach to address the correct-by-design synthesis relies on ab-
stractions (a.k.a. symbolic control) [41], whereby a finite-state ma-
chine (also known as “symbolic model”) approximates the behav-
ior of the original (a.k.a. “concrete”) system that, instead, evolves
in a continuous (or even hybrid) state space. This is achieved
by defining mathematical relations between the finite state ma-

†Julien Calbert and Adrien Banse are co-first authors with equal contribu-
tion and importance.

chine and the original dynamics [3, 38]. Several open-source tool-
boxes [34, 39, 40] have already implemented abstraction-based
controllers, including recent toolboxes for analysis and synthesis
of abstractions for stochastic systems [33, 43], illustrating the need
in industry for such techniques offering safety guarantees. Never-
theless, abstraction suffers from the curse of dimensionality, and
none of these toolboxes can solve non-academic problems of di-
mension, say, larger than 3. These limitations of scale explain why
abstraction-based techniques have not yet been successful, particu-
larly in the field of robotics.

To address this issue, we introduce Dionysos.jl1, a modular Ju-
lia [9] package for solving optimal control problems using state-of-
the-art techniques, from control, optimization, and machine learn-
ing, for complex systems. It is built on top of different Julia
packages such as JuMP.jl and MathOptInterface.jl, and fea-
tures optimal control problem definitions and several abstraction-
based methods to solve them. Dionysos.jl is the software of the
ERC project Learning to control (L2C)2. It implements new fun-
damental techniques that have been designed for smart abstrac-
tion [16, 30, 20, 6, 15] as part of the L2C project, with the goal of
designing control techniques that would come with guarantees of
safety and efficiency, while at the same time being able to take into
account non-standard constraints or information, e.g. coming from
first principles in physics, a logical specification translating some
legal regulations, or some recommendation from a human being.

In recent years, a few groups have proposed ideas to alleviate
the computational burdens of the abstraction-based approach, such
as for instance the concept of lazy abstractions [18, 21, 42, 24].
Dionysos.jl provides a general purpose platform allowing to im-
plement such non-standard approaches in a common environment.
In particular, it features:

—abstractions that are covers of the concrete space (i.e., not only
partitions);

—discretization templates, such as hyperrectangles and ellipsoids;

—controller templates, including piecewise constant controllers or
piecewise affine controllers;

—different and novel types of abstraction relations such as alter-
nating simulation relation (ASR), feedback refinement relation
(FRR), or memoryless concretization relation (MCR).

1The package is open source and available on GitHub at: https://
github.com/dionysos-dev/Dionysos.jl.
2European Reasearch Council (ERC) under the European Union’s Horizon
2020 research and innovation program under grant agreement No 864017 -
L2C.

1

https://github.com/dionysos-dev/Dionysos.jl
https://github.com/dionysos-dev/Dionysos.jl

The Proceedings of the JuliaCon Conferences 6(66), 2024

Our techniques, as well as our software solution, have been vali-
dated on academic examples from [22, 35, 38, 23], accessible in
the documentation.

This paper is structured as follows. Section 2 introduces the con-
cept of abstraction-based control. Section 3 is devoted to the de-
scription of the features of Dionysos.jl. Section 4 describes the
package structure and provides a description of its main modules.
In Sections 5 and 6, we present numerical examples and benchmark
comparisons with existing toolboxes, respectively.

Notation: The sets R,Z,Z+ denote respectively the sets of real
numbers, integers and non-negative integers. Given a set A, the set
A∗ is its Kleene closure. Given two sets A,B, we define a single-
valued map as f : A → B, while a set-valued map is defined as
f : A → 2B , where 2B is the power set of B, i.e., the set of all
subsets of B. The image of a subset Ω ⊆ A under f : A → 2B

is denoted f(Ω). We identify a binary relation R ⊆ A × B with
set-valued maps, i.e., R(a) = {b | (a, b) ∈ R} and R−1(b) = {a |
(a, b) ∈ R}. A relation R ⊆ A × B is strict (resp. single-valued)
if for every a ∈ A the set R(a) ̸= ∅ (resp. R(a) is a singleton).

2. Abstraction-based control
In this section, we provide a concise overview of abstraction-based
control, the control approach implemented in Dionysos.jl. For a
more detailed explanation, please refer to [41, 38].

2.1 Control framework
In this section, we start by defining the considered control frame-
work, i.e., the systems, the controllers and the specifications.

We consider dynamical systems of the following form.

DEFINITION 1. A transition control system is a tuple S =
(X ,U , F) such that

x(k + 1) ∈ F (x(k), u(k)),

where X and U are respectively the set of states and inputs and the
set-valued map F : X × U → 2X .

The use of a set-valued map to describe the transition map of a
system allows to model perturbations and diverse kinds of non-
determinism in a common formalism. In particular, it can be used
to model bounded disturbances w, i.e.

F (x, u) = {f(x, u,w) | w ∈ W} (1)

where f : X × U ×W → X and W ⊆ Rnw is a bounded set.

We introduce the set-valued operator of available inputs, defined
as UF (x) = {u ∈ U | F (x, u) ̸= ∅}, which represents the set
of inputs u available at a given state x. When it is clear from the
context which system it refers to, we simply write the available
inputs operator U(x).

We say that a transition control system is deterministic if for every
state x ∈ X and control input u ∈ U , F (x, u) is either empty
or a singleton. Otherwise, we say that it is non-deterministic. A
finite-state system, in contrast to an infinite-state system, refers to
a system characterized by finitely many states and inputs.

A tuple (x,u) ∈ XT+1 × UT is a trajectory of length T of the
system S = (X ,U , F) starting at x(0) if T ∈ N ∪ {∞}, x(0) ∈
X , ∀k ∈ {0, . . . , T − 1} : u(k) ∈ U(x(k)) and x(k + 1) ∈
F (x(k), u(k)). The set of trajectories of S is called the behavior
of S , denoted B(S).

We now define static controllers, which are characterized by the
fact that the set of control inputs that the controller can take is de-
termined solely by the current state of the system.

DEFINITION 2. We define a static controller for a system S =
(X ,U , F) as a set-valued map C : X → 2U such that ∀x ∈ X :
C(x) ⊆ U(x), C(x) ̸= ∅. We define the controlled system, de-
noted as C × S, as the transition system characterized by the tuple
(X ,U , FC) where x′ ∈ FC(x, u) ⇔ (u ∈ C(x) ∧ x′ ∈ F (x, u)).

We now define the control problem.

DEFINITION 3. Consider a system S = (X ,U , F). A specifi-
cation Σ for S is defined as any subset Σ ⊆ (X ×U)∗∪ (X ×U)∞.
It is said that system S satisfies the specification Σ if B(S) ⊆ Σ. A
system S together with a specification Σ constitute a control prob-
lem (S,Σ). Additionally, a controller C is said to solve the control
problem (S,Σ) if C × S satisfies the specification Σ.

2.2 Classical abstraction
Given a mathematical description of the system dynamics and the
specifications describing the desired closed-loop behavior of the
system, abstraction-based control techniques involve synthesizing
a correct-by-construction controller through a systematic three-step
procedure illustrated on Figure 1. First, both the original system
S1 = (X1,U1, F1) and the specifications Σ1 are transposed into an
abstract domain, resulting in an abstract system S2 = (X2,U2, F2)
and corresponding abstract specifications Σ2. We refer to the orig-
inal system as the concrete system as opposed to the abstract sys-
tem. Next, an abstract controller C2 is synthesized to solve this ab-
stract control problem (S2,Σ2). Finally, in the third step, called
concretization as opposed to abstraction, a controller C1 for the
original control problem is derived from the abstract controller.

Concrete system Abstract system

Abstract controllerConcrete controller

Concrete specification Abstract specification

1) Abstraction

Abstract
controller
synthesis

3) Concretization

Concrete problem Abstract problem

2)

Fig. 1: The three steps of abstraction-based control.

The effectiveness of this approach stems from replacing the con-
crete system, often characterized by an infinite number of states,
with a finite state system. This substitution enables the use of pow-
erful control tools in the second step (see [7, 26]), such as those
derived from graph theory, including methods like Dijkstra or the
A-star algorithm. This facilitates the design of controllers that are
correct by construction, often accompanied by rigorous guarantees
in terms of safety or performance.

In practice, the abstract domain X2 of S2 is constructed by dis-
cretizing the concrete state space X1 of S1 into subsets (called
cells). The discretization is induced by a relation R ⊆ X1×X2, i.e.,
the cell associated with the abstract state x2 ∈ X2 is R−1(x2) ⊆

2

The Proceedings of the JuliaCon Conferences 6(66), 2024

X1. Note that in this context, we refer to the set-valued map
R(x1) = {x2 | (x1, x2) ∈ R} as the quantizer. When R is a
single-valued map, we refer to it as defining a partition of X1, in
contrast to the case of set-valued maps where we say that it defines
a cover of X1, see Figure 2 for clarity. Notably, the condition that
R is a strict relation is equivalent to ensuring that the discretization
completely covers X1.

Fig. 2: Types of discretization of the concrete state space. Let S1 =

(X1,U1, F1) with X1 = [0, 1]2, S2 = (X2,U2, F2) with X2 =
{q1, q2, q3, q4}, R1 ⊆ X1 × X2 and R2 ⊆ X1 × X2 are explicit from
the figure. Left: R1 is a strict single-valued map, i.e., it induces a full parti-
tion of X1. Right: R2 is a non-strict set-valued map, i.e., it induces a partial
cover of X1.

In order to be able to reconstruct a concrete controller C1 from the
abstract controller C2, the relation R must satisfy some properties.
It is shown in [17, Theorem 1] that if R is an alternating simulation
relation (ASR) [41, Definition 4.19], then it is possible to construct
a (possibly non-static) controller C1 for S1 from the abstract con-
troller C2. However, the complexity of the concretization algorithm,
and the fact that a non-static controller may have several implemen-
tation drawbacks, have motivated researchers to refine the notion
of ASR. In particular, most algorithms in the literature [40, 11, 16]
rely on the feedback refinement relation [38, Def. V.2], which we
now define.

DEFINITION 4. A strict relation R is a feedback refinement re-
lation between the systems S1 and S2, if for each (x1, x2) ∈ R

(i) U2(x2) ⊆ U1(x1) ;
(ii) for every u ∈ U2(x2), x′

1 ∈ F1(x1, u), x′
2 ∈ R(x′

1): x
′
2 ∈

F2(x2, u).

This specific relation allows a simple concretization scheme
(see [38, V.4 Theorem])

C1(x1) = C2(R(x1)). (2)

Observe that the requirements (i) and (ii) in Definition 4 restrict
the class of concrete controllers to piecewise constant controllers
since the control input only depends on the abstract state (2).

2.3 Smart abstraction
The classical abstraction-based approach consists in constructing
a feedback refinement relation R based on a predefined partition
of the entire state space. The limitation to piecewise constant con-
trollers, combined with the use of a rigid/predefined partition of the
entire concrete state space, could result in an intractable, or even
unsolvable, abstract problem (S2,Σ2). Indeed, if the system does
not exhibit local incremental stability [4, Definition 2.1][31] around

a cell, meaning that trajectories move away from each other, the use
of piecewise constant controllers introduces a significant amount of
non-determinism into the abstraction as illustrated in Figure 3. In-
deed, this results in a high cardinality of the set of outputs of the
transition map F2(x2, u) of the abstraction.

To address these issues, Dionysos.jl provides a framework that
generalizes the classical approach by allowing the use of overlap-
ping cells and state-dependent controllers which are defined differ-
ently from one cell to another, in a piecewise manner. The design
of low-level controllers within cells, in combination with high-level
abstraction-based controllers, opens up new possibilities when co-
creating the abstraction and the controller, as is done in so-called
lazy abstractions (i.e., postponing heavier numerical operations).

More precisely, Dionysos.jl allows to construct a (non-strict) re-
lation R that is a cover. For this purpose, it computes a memory-
less concretization relation (MCR) [17, Definition 8] between S1

and S2.

DEFINITION 5. A relation R is a memoryless concretization
relation between S1 and S2, if for each (x1, x2) ∈ R

for every u2 ∈ U2(x2) there exists u1 ∈ U1(x1) such that

for every x′
1 ∈ F1(x1, u1) : R(x′

1) ⊆ F2(x2, u2). (3)

We also define the associated extended relation Re ⊆ X1 × X2 ×
U1 × U2, which is defined by the set of (x1, x2, u1, u2) satisfying
the condition (3), and an interface IR : X1×X2×U2 → 2U1 which
maps abstract inputs to concrete ones, i.e.,

IR(x1, x2, u2) = {u1 | (x1, x2, u1, u2) ∈ Re}.

This relation provides a simple concretization scheme, even in the
presence of overlapping cells (see [17] for a complete discussion),
which allows the use of state-dependent local controllers within a
cell

C1(x1) = (C2 ◦IR R)(x1) =
⋃

x2∈R(x1)

IR(x1, x2, C2(x2)).

By designing these local state-dependent controllers, for example
by solving an optimization problem (e.g., [14, Section V]), we can
ensure deterministic transitions in the abstraction, thereby elimi-
nating the non-determinism imposed by the discretization of the
concrete system (see Figure 3). In addition, contrary to the clas-
sical approach, this technique avoids discretizing the input-space
and uses all the available inputs, making it possible to design, given
some cost metric, better control solutions.

In order to reduce the number of cells in the abstrac-
tion, Dionysos.jl computes a goal-specific abstraction by co-
designing the abstraction and the controller. This can be done by
optimizing the shape of the cells during the construction of the ab-
straction. For example, the combined use of ellipsoid-based cov-
ering and affine local feedback controllers can leverage the power
of linear matrix inequalities (or LMI) and convex optimization to
create larger/non-standard cells (see Figure 4).

3. Dionysos.jl features
In this section, we present the features currently supported by
Dionysos.jl.

Systems: Dionysos.jl supports bounded disturbances as de-
scribed in (1) and returns static controllers (see Definition 2) for
both the abstract and concrete problems.

3

The Proceedings of the JuliaCon Conferences 6(66), 2024

Fig. 3: Comparison of piecewise constant and state-dependent controllers.
The red region illustrates F1(x1, u) for all x1 ∈ R−1(x2), given u ∈ U1

where u ∈ U2(x2). The blue region shows G1(x1) = F1(x1, κ(x1)) for
all x1 ∈ R−1(x2), where κ ∈ U2(x2) is a local state-dependent controller
κ : X1 → U1. Left: The two-dimensional concrete system with its state
space discretization. Right: The corresponding abstract system, highlighting
the non-deterministic transition F2(x2, u) and the deterministic transition
F2(x2, κ).

Fig. 4: Comparison between classical and smart abstractions for a planar
system with state trajectory (blue line) and value function (color map) ob-
tained for the optimal control problem of departing from XI and reaching
XT while avoiding obstacles XO . Left: Abstraction covering the entire state
space with a naive grid-based partition. Non-colored represents a region
where no controller could be designed. Right: Abstraction partially cover-
ing the state space with ellipsoidal cells and a local feedback controller.

Specifications: Dionysos.jl supports either reach-avoid or in-
variance (safety) specifications. Given a system S = (X ,U , F)
and sets XI ,XT ,XO ⊆ X , a reach-avoid specification is defined
as

ΣReach = {(x,u) ∈ (X × U)∞ | x(0) ∈ XI ⇒
∃k ∈ Z+ : (x(k) ∈ XT ∧ ∀k′ ∈ [0; k) : x(k′) /∈ XO)},

(4)

which enforces that all states in the initial set XI will reach the tar-
get XT in finite time while avoiding obstacles in XO . We use the
abbreviated notation ΣReach = [XI ,XT ,XO] to denote the specifi-
cation (4). Given sets XI ,XS ⊆ X , an invariance specification is
defined as

Σsafe = {(x,u) ∈ (X × U)∞ | x(0) ∈ XI ⇒
∀k ∈ Z+ : x(k) ∈ XS}, (5)

which requires that all states in the initial set XI remain (safely)
in the set XS forever. In addition to the specifications, a state cost
function c : X → R+ evaluating the cost of being in a state x,
and a transition cost function t : X × U → R+ quantifying the
cost of transitioning from one state x to another with control input
u, can be supplied to the control problem. The objective is then to
design a controller that satisfies the specification while minimizing
the cumulative cost.

Discretization templates: The quantizer R can either be a (partial
or not) partition or cover of the concrete state space. In addition,
given a continuous state space X ⊆ Rn, Dionysos.jl supports
two types of sets for the quantizer: hyperrectangles (Definition 6),
and ellipsoids (Definition 7).

DEFINITION 6. A hyperrectangle of center c ∈ Rn and half-
lengths h ∈ Rn

+ is defined as

H(c, h) = {x ∈ Rn | |xi − ci| ≤ hi for i = 1, . . . , n}.

DEFINITION 7. An ellipsoid with center c ∈ Rn and shape de-
fined by P ∈ Sn

+ is defined as

E(c, P) = {x ∈ Rn | (x− c)⊤P (x− c) ≤ 1}.

4. Package structure
In this section we describe the architecture of Dionysos.jl. It is
composed of seven root modules. The first three modules, namely
System, Problem and Optim, will be described in this paper. For
the sake of conciseness, the four other principal modules, namely
Domain, Mapping, Symbolic and Utils, are skipped but can be
found in the package documentation. A summary of this section is
given in Figure 5.

4.1 The System module
The System module contains mathematical descriptions of con-
trolled systems (see Definition 1), controllers (see Definition 2) and
trajectories. It is an extension of MathematicalSystems.jl and
HybridSystems.jl [29], and complements the latter with more
specific system definitions.

The control systems are described as structures implementing
the abstract type ControlSystem{N, T}, where N and T are re-
spectively the dimension and type of the state-space (e.g. N =
3 and T = Float64 for a three-dimensional continuous state-
space). For example, ControlSystemLinearized{N, T, F1,
F2, F3, F4} <: ControlSystem{N, T}, where F1, F2, F3 and
F4 are subtypes of Function, implements a control system whose
transition function has been linearized. It has the form

ẋ(t) ∈ F̃ (x, u), (6)

where F̃ (x, u) is such as in (1) with an additive noise, that is

F̃ (x, u) =
{
f̃(x, u) + w |w ∈ W

}
, (7)

where W = [−W,W]nx , and where f̃ is the linearized ver-
sion of some possibly nonlinear function f . The system is con-
sidered to be sampled with a given time-step, and the corre-
sponding discrete-time transition function is computed with a nu-
merical derivation scheme such as the fourth-order Runge Kutta
method, implemented as RungeKutta4 in Dionsysos.jl. The
structure ControlSystemLinearized{N,T,F1,F2,F3,F4} con-
tains the fields

—tstep::Float64, the sampling time-step,
—measnoise::SVector{N,T}, the bound W on the disturbance,
—sys_map::F1, the sampled possibly nonlinear transition func-

tion;
—linsys_map::F2, the sampled linearized transition function,
—error_map::F3, the difference between linsys_map and
sys_map, and

4

The Proceedings of the JuliaCon Conferences 6(66), 2024

—sys_inv_map::F4, the inverse of sys_map.

The controllers implement the abstract type Controller and have
a field c_eval that corresponds to the set-valued function C(x).
For example, the structure ConstantController{T,VT} imple-
ments controllers of the form C(x) = {c}, where c is a con-
stant. It contains the fields c::VT that is the constant c, where
VT<:AbstractVector{T} and T<:Real, and c_eval.

Finally, the module System contains descriptions of trajecto-
ries. For example, the structure ContinuousTrajectory{T,
XVT<:AbstractVector{T}, UVT<:AbstractVector{T}} con-
tains the fields x::Vector{XVT} and u::Vector{UVT}, and im-
plements trajectories of the form (x,u) such as described in Sec-
tion 2.

4.2 The Problem module
The Problem module contains the two structures that respectively
define the reach-avoid and invariance specification problems in
Dionysos.jl. Both implement the abstract type ProblemType.

OptimalControlProblem{S,XI,XT,XC,TC,T<:Real} is the
first structure, and implements a reach-avoid problem. Its fields are

—system::S, the system to be controlled,
—initial_set::XI, the initial set XI ,
—target_set::XT, the target set XT ,
—state_cost::XC, the state cost function,
—transition_cost::TC, the transition cost function, and
—time::T, the number of allowed steps.

Note that, in Dionysos.jl, the obstacles are encoded as
part of the domain of the system3. The second structure is
SafetyProblem{S,XI,XS,T<:Real}, and implements an invari-
ance problem. Its fields are

—system::S, the system to be controlled,
—initial_set::XI, the initial set XI ,
—safe_set::XS, the safe set XS ,
—time::T, the number of allowed steps.

For both structures, the type S is typically a system type from the
packages MathematicalSystems.jl and HybridSystems.jl or
from the System module.

4.3 The Optim module
The Optim module contains both abstraction-based and classi-
cal control strategies. Table 1 gathers the implemented strate-
gies. All strategies are viewed as solvers inheriting from
JuMP.jl [32], a powerful optimization framework embedded
in Julia. More precisely, they are all subtypes of the abstract
type MOI.AbstractOptimizer, and implement the function
MOI.optimize! from the package MathOptInterface.jl [28].

A simple example of an implementation of a classical abstraction-
based method is given in the following. In Code 2, the steps given
in Figure 1 are followed. In Code 1, the structure for the optimizer
is defined. To be initialized, it needs a concrete problem to solve,
as well as a discretization for the state space and the input space.

3A description of the Domain module can be found in the package docu-
mentation.

Module Type Reference
BemporadMorari Classical [8]
BranchAndBound Classical [30]

AB.UniformGridAbstraction Classical abstraction [38]
AB.EllipsoidsAbstraction Smart abstraction [20]

AB.HierarchicalAbstraction Smart abstraction [16]
AB.LazyAbstraction Smart abstraction [16]

AB.LazyEllipsoidsAbstraction Smart abstraction [14].
Table 1. : Modules, types and corresponding references of all the control
strategies implemented in Dionysos.jl, where AB = Abstraction in
the codebase.� �

1 mutable struct Optimizer {T}<: MOI . AbstractOptimizer
2 concrete_problem :: Union {
3 Nothing ,
4 PR . OptimalControlProblem ,
5 PR . SafetyProblem
6 }
7 abstract_problem :: Union {
8 Nothing ,
9 PR . OptimalControlProblem ,

10 PR . SafetyProblem
11 }
12 abstract_controller :: Any
13 concrete_controller :: Any
14 state_grid :: Any
15 input_grid :: Any
16 function Optimizer {T}(cp , sg , ig) where {T}
17 return new {T}(
18 cp ,
19 nothing ,
20 nothing ,
21 nothing ,
22 nothing ,
23 sg ,
24 ig
25)
26 end
27 end� �

Code 1: Definition of an abstraction-based strategy structure imple-
menting the abstract type MOI.AbstractOptimizer.

� �
1 function MOI . optimize !(opt :: Optimizer)
2 # Build the abstraction
3 abstract_system = build_abs_system (
4 opt . concrete_problem . system ,
5 opt . state_grid ,
6 opt . input_grid ,
7)
8 # Build the abstract problem
9 abstract_problem = build_abs_problem (

10 opt . concrete_problem ,
11 abstract_system
12)
13 opt . abstract_problem = abstract_problem
14 # Solve the abstract problem
15 abstract_controller = solve_abs_problem (
16 abstract_problem
17)
18 opt . abstract_controller = abstract_controller
19 # Solve the concrete problem
20 opt . concrete_controller = solve_conc_problem (
21 abstract_system ,
22 abstract_controller
23)
24 end� �

Code 2: Definition of the MOI.optimize! function for the strategy
Optimizer defined in Code 1.

5

The Proceedings of the JuliaCon Conferences 6(66), 2024

System

Problem

Optim

MathematicalSystems.jl
HybridSystems.jl

MathOptInterface.jl
JuMP.jl

Fig. 5: Summary of Section 4. The System module is an extension of
MathematicalSystems.jl and HybridSystems.jl, and implements
mathematical definitions of dynamical systems. The Problem module con-
tains mathematical definitions of control problems. All problem structures
have a system as a field. The Optim module contains the control strate-
gies to solve the problems. It is built on top of the optimization packages
MathOptInterface.jl and JuMP.jl.

5. Numerical example
In this section, we provide an example of how Dionysos.jl is
used to control a nonlinear system with a smart abstraction method.
We first define the problem, then solve it with Dionysos.jl, and
finally we provide visualization results, as recipes are implemented
for all visualizable structures4. For the sake of conciseness, the code
presented in this section is slightly simplified5.

EXAMPLE 1. Let E(c, P) ⊆ Rn be an ellipsoid with center
c ∈ Rn and shape defined by P ∈ Rn×n as defined in Definition 7.
We consider a reach-avoid problem. The studied dynamical sys-
tem is noted (X \ XO,U , F), where X = [−20, 20]2, XO =
E(0, 0.02I2), U = [−10, 10]2, and F (x, u) = {f(x, u)}. The
function f is defined as

f(x, u) =

(
1.1x1 − 0.2x2 − µx3

2 + u1

1.1x2 + 0.2x1 + µx3
1 + u2

)
, (8)

where µ = 5×10−5. We want to solve a reach-avoid problem where
XI = E((−10,−10), 10I2) and XT = E((10, 10), I2). There is
no state cost, and the transition cost function is defined as

t(x, u) = x⊤x+ u⊤u+ 1. (9)

The system in Example 1, as well as other examples,
are already defined in Dionysos.jl/problems. The
OptimalControlProblem defining the problem in Example 1
can be found in the NonLinear module in problems/non_-
linear.jl. In Code 3, we import this problem.� �

1 concrete_problem = NonLinear . problem ()
2 concrete_system = concrete_problem . system� �
Code 3: The problem stated above is imported from the problems
directory.

4See https://docs.juliaplots.org/latest/recipes/ for an intro-
duction on recipes.
5See https://dionysos-dev.github.io/Dionysos.jl/stable/
generated/Lazy-Ellipsoids-Abstraction/ for the full example.

We choose to use AB.LazyEllipsoidsAbstraction (see Ta-
ble 1) to solve this problem, a smart abstraction method that con-
structs a memoryless concretization relation (MCR) that partially
covers the state space with ellipsoids. In Code 4, we instantiate the
corresponding Optimizer, then set all the needed fields, including
concrete_problem, the reach-avoid problem stated above. For
the sake of conciseness, we do not state the purpose of the other
fields, and we gather them in the variable other_parameters in
the code.� �

1 optimizer = MOI . instantiate (
2 AB . LazyEllipsoidsAbstraction . Optimizer
3)
4 AB . LazyEllipsoidsAbstraction . set_optimizer !(
5 optimizer ,
6 concrete_problem ,
7 other_parameters ...
8)� �
Code 4: The Optimizer is instantiated, and the solver parameters
are set.

In Code 5, we solve the problem and retrieve the corre-
sponding abstract system, abstract problem and concrete con-
troller (see Figure 1). Note that every operation follows the
MathOptInterface.jl syntax.� �

1 MOI . optimize !(optimizer)
2 abstract_system = MOI . get (
3 optimizer ,
4 MOI . RawOptimizerAttribute (" abstract_system ")
5)
6 abstract_problem = MOI . get (
7 optimizer ,
8 MOI . RawOptimizerAttribute (" abstract_problem ")
9)

10 abstract_controller = MOI . get (
11 optimizer ,
12 MOI . RawOptimizerAttribute (" abstract_controller ")
13)
14 concrete_controller = MOI . get (
15 optimizer ,
16 MOI . RawOptimizerAttribute (" concrete_controller ")
17)� �

Code 5: The problem is solved, and the result is extracted from the
solver.

In Code 6, we simulate a concrete closed-loop trajectory starting
from an initial point x0 sampled from the initial set XI .� �

1 x0 = UT . sample (concrete_problem . initial_set)
2 reached (x) = x \ in concrete_problem . target_set
3 trajectory = ST . get_closed_loop_trajectory (
4 concrete_system ,
5 concrete_controller ,
6 concrete_problem . transition_cost ,
7 x0 ;
8 stopping = reached ,
9)� �
Code 6: Simulate a closed-loop trajectory.

In Dionysos.jl, we can also generate visualizations thanks to the
implemented recipes. In Code 7, we visualize the constructed ab-
stract system, and it gives the plot in Figure 6.

6

https://docs.juliaplots.org/latest/recipes/
https://dionysos-dev.github.io/Dionysos.jl/stable/generated/Lazy-Ellipsoids-Abstraction/
https://dionysos-dev.github.io/Dionysos.jl/stable/generated/Lazy-Ellipsoids-Abstraction/

The Proceedings of the JuliaCon Conferences 6(66), 2024

Fig. 6: Results of Code 7 for different meta-parameters (other_-
parameters) of the solver AB.LazyEllipsoidsAbstraction. The ini-
tial set XI , target set XT , and obstacle set XO are shown in green, red, and
black, respectively. The value function, which provides an upper bound on
the cost to reach the target, is shown in a blue color map, with the closed-
loop system’s trajectory also displayed in blue.

� �
1 fig = plot (aspect_ratio =: equal)
2 plot !(abstract_system ;
3 arrowsB = true ,
4 cost = true)
5 plot !(concrete_problem . target_set ;
6 color = : red)
7 plot !(trajectory ;
8 color = : blue)
9 plot !(concrete_problem . initial_set ;

10 color = : green)� �
Code 7: The recipe implemented for the abstraction is used to visu-
alize the abstract system. The cost is set to true to plot the upper-
bound on the cost to reach the target.

6. Benchmarking
In order to evaluate the performance of Dionysos.jl, we compare
the performance of our package against other similar packages,
namely SCOTS [40] and CoSyMA [35]. We exclude PESSOA
[34, 39] from the comparison as it is outperformed by SCOTS [40].
The code for comparing these packages is published on CodeOcean
[13], and is entirely reproducible. For more information, we invite
the reader to read the README.md file in the CodeOcean capsule.

We reproduced the two numerical experiments of [40]. First, the
DC-DC converter example presented in [40, Section 4.2] is repro-
duced with Dionysos.jl, SCOTS and CoSyMA. Thanks to the
modularity of Dionysos.jl, we can specify to the package that
the system is incrementally stable, resulting in sped-up abstraction
and synthesis procedures [19]. For the sake of completeness, we
also provide the performance of Dionysos.jl in the setting where
no prior knowledge on the stability is given. The results can be
found in Table 2.

Abstraction [s] Synthesis [s] Total [s]
Dionysos.jl (no prior) 1.24 3.53 4.77
Dionysos.jl (prior) 0.63 2.76 3.39

SCOTS 19.05 74.01 93.06
CoSyMA — — 5.31

Table 2. : Comparison between SCOTS, CoSyMA and Dionysos.jl
(AB.UniformGridAbstraction solver from Table 1) for the DC-DC con-
verter example. Dionysos.jl outperforms SCOTS and CoSyMA with and
without prior knowledge of the system’s incrementally stable property.

Second, the path planning problem presented in [40, Section 4.1]
is executed with Dionysos.jl and SCOTS. We exclude CoSyMA
because this system is not incrementally stable. The results can be
found in Table 3.

Abstraction [s] Synthesis [s] Total [s]
Dionysos.jl 8.58 6.45 15.03

SCOTS 117.52 480.44 597.96
Table 3. : Comparison between SCOTS, CoSyMA and Dionysos.jl
(AB.UniformGridAbstraction solver from Table 1) for the path plan-
ning example. Dionysos.jl outperforms SCOTS.

We see that Dionysos.jl outperforms the other packages for these
two examples. We also reproduced [40, Figures 3 and 4] in Fig-
ure 7 and Figure 8, which shows that they compute the same con-
troller. The visualizations of the DC-DC converter controller with
and without prior knwoledge are identical, as it can be verified in
[13].

The reason for such a difference between SCOTS, written in C++,
and Dionysos.jl does not lie in the programming language used
to write the package but in the synthesis algorithm itself. For ex-
ample, unlike SCOTS, our package does not make use of Binary
Decision Diagrams (or BDDs) [12], which as recognized in [40]
results in substantially longer execution times compared to tools
that use alternative data structures.

7. Conclusions and further work
In this paper, we introduce Dionysos.jl, a new software pack-
age that provides both a new abstract symbolic representation of
the system and controllers with safety guarantees. It generalizes
existing toolboxes limited to classical abstractions by allowing the
construction of abstractions within the memoryless concretization
relation framework, which provides a simple concretization step
and the design of low-level controllers. We provide a description
of the structure of the package, and describe further the main mod-
ules of it. We then show how Dionysos.jl can be used in practice
by providing a reach-avoid control problem example. Finally, we
demonstrated the performance of our package compared to exist-
ing similar toolboxes.

7

The Proceedings of the JuliaCon Conferences 6(66), 2024

Fig. 7: Reproduction of [40, Figure 4] with Dionysos.jl.

Fig. 8: Reproduction of [40, Figure 3] with Dionysos.jl.

As outlined in Section 4 with the array of implemented solvers,
the goal of Dionysos.jl is to provide a modular environment to
facilitate the implementation of new smart abstraction algorithms
based for instance on a partial cover of the state-space and the use
of piecewise state-dependent controllers.

Because of the hardness of the control problem we aim to solve,
the choice of an appropriate solver and its meta-parameters can be
self-tuned by end-users. In future work, we plan to design a meta-
solver within Dionysos.jl which would combine these modules
in an ad-hoc and opportunistic approach, thanks to Machine Learn-
ing and Artificial Intelligence techniques, in order to exploit the

particular problem structures and alleviate the curse of dimension-
ality.

8. Acknowledgment
JC and AB are FRIA Research Fellows. The research of BL is
supported by the European Commission (ERC Adv. Grant) under
Grant 885682. RJ is a FNRS honorary Research Associate. This
project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 864017 - L2C.

9. References

[1] Matthias Althoff. Reachability analysis and its application to
the safety assessment of autonomous cars. PhD thesis, Tech-
nische Universität München, 2010.

[2] Rajeev Alur. Principles of cyber-physical systems. MIT press,
2015. doi:10.1017/9781107588981.

[3] Rajeev Alur, Thomas A Henzinger, Orna Kupferman, and
Moshe Y Vardi. Alternating refinement relations. In CON-
CUR’98 Concurrency Theory: 9th International Conference
Nice, France, September 8–11, 1998 Proceedings 9, pages
163–178. Springer, 1998. doi:10.1007/BFb0055622.

[4] David Angeli. A Lyapunov approach to incremental sta-
bility properties. IEEE Transactions on Automatic Control,
47(3):410–421, 2002. doi:10.1109/9.989067.

[5] Christel Baier and Joost-Pieter Katoen. Principles of model
checking. MIT press, 2008.

[6] Adrien Banse, Licio Romao, Alessandro Abate, and
Raphael Jungers. Data-driven memory-dependent abstrac-
tions of dynamical systems. In Learning for Dynamics
and Control Conference, pages 891–902. PMLR, 2023.
doi:10.48550/arXiv.2212.01926.

[7] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. For-
mal methods for discrete-time dynamical systems, volume 89.
Springer, 2017. doi:10.1007/978-3-319-50763-7.

[8] Alberto Bemporad and Manfred Morari. Control of sys-
tems integrating logic, dynamics, and constraints. Auto-
matica, 35(3):407–427, March 1999. doi:10.1016/s0005-
1098(98)00178-2.

[9] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B
Shah. Julia: A fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017. doi:10.1137/141000671.

[10] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn
Potomkin, and Christian Schilling. Juliareach: a toolbox for
set-based reachability. In Proceedings of the 22nd ACM In-
ternational Conference on Hybrid Systems: Computation and
Control, pages 39–44, 2019. doi:10.1145/3302504.3311804.

[11] Alessandro Borri, Giordano Pola, and Maria Domenica
Di Benedetto. Design of symbolic controllers for networked
control systems. IEEE Transactions on Automatic Control,
64(3):1034–1046, 2018. doi:10.1109/TAC.2018.2833630.

[12] Randal E Bryant. Symbolic boolean manipulation with or-
dered binary-decision diagrams. ACM Computing Surveys
(CSUR), 24(3):293–318, 1992. doi:10.1145/136035.136043.

[13] Julien Calbert, Adrien Banse, Benoît Legat, and Raphaël M.
Jungers. Dionysos.jl: a modular platform for smart symbolic
control, 2024. doi:10.24433/CO.6327570.V2.

8

http://dx.doi.org/10.1017/9781107588981
http://dx.doi.org/10.1007/BFb0055622
http://dx.doi.org/10.1109/9.989067
http://dx.doi.org/10.48550/arXiv.2212.01926
http://dx.doi.org/10.1007/978-3-319-50763-7
http://dx.doi.org/10.1016/s0005-1098(98)00178-2
http://dx.doi.org/10.1016/s0005-1098(98)00178-2
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1145/3302504.3311804
http://dx.doi.org/10.1109/TAC.2018.2833630
http://dx.doi.org/10.1145/136035.136043
http://dx.doi.org/10.24433/CO.6327570.V2

The Proceedings of the JuliaCon Conferences 6(66), 2024

[14] Julien Calbert, Lucas N Egidio, and Raphaël M Jungers.
Smart abstraction based on iterative cover and non-
uniform cells. arXiv preprint arXiv:2403.02190, 2024.
doi:10.48550/arXiv.2403.02190.

[15] Julien Calbert and Raphaël M Jungers. Data-driven heuris-
tic symbolic models and application to limit-cycle detection.
In 2023 American Control Conference (ACC), pages 4351–
4356. IEEE, 2023. doi:10.23919/ACC55779.2023.10156175.

[16] Julien Calbert, Benoît Legat, Lucas N Egidio, and
Raphaël Jungers. Alternating simulation on hierarchical
abstractions. In 2021 60th IEEE Conference on Deci-
sion and Control (CDC), pages 593–598. IEEE, 2021.
doi:10.1109/CDC45484.2021.9683448.

[17] Julien Calbert, Sébastien Mattenet, Antoine Girard, and
Raphaël M. Jungers. Memoryless concretization relation,
2024. doi:10.48550/ARXIV.2403.09556.

[18] Javier Camara, Antoine Girard, and Gregor Gössler. Safety
controller synthesis for switched systems using multi-scale
symbolic models. In 2011 50th IEEE Conference on Deci-
sion and Control and European Control Conference, pages
520–525. IEEE, 2011. doi:10.1109/CDC.2011.6160424.

[19] Javier Cámara, Antoine Girard, and Gregor Gössler.
Synthesis of switching controllers using approximately
bisimilar multiscale abstractions. In Proceedings of the
14th international conference on Hybrid systems: com-
putation and control, HSCC ’11. ACM, April 2011.
doi:10.1145/1967701.1967730.

[20] Lucas N Egidio, Thiago Alves Lima, and Raphaël M Jungers.
State-feedback abstractions for optimal control of piecewise-
affine systems. In 2022 IEEE 61st Conference on Deci-
sion and Control (CDC), pages 7455–7460. IEEE, 2022.
doi:10.1109/CDC51059.2022.9992495.

[21] Antoine Girard, Gregor Gössler, and Sebti Mouelhi. Safety
controller synthesis for incrementally stable switched sys-
tems using multiscale symbolic models. IEEE Trans-
actions on Automatic Control, 61(6):1537–1549, 2015.
doi:10.1109/TAC.2015.2478131.

[22] Antoine Girard, Giordano Pola, and Paulo Tabuada. Approx-
imately bisimilar symbolic models for incrementally stable
switched systems. IEEE Transactions on Automatic Control,
55(1):116–126, 2009. doi:10.1109/TAC.2009.2034922.

[23] Ebru Aydin Gol, Mircea Lazar, and Calin Belta. Language-
guided controller synthesis for linear systems. IEEE Trans-
actions on Automatic Control, 59(5):1163–1176, May 2014.
doi:10.1109/tac.2013.2295664.

[24] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-
Kathrin Schmuck. Multi-layered abstraction-based controller
synthesis for continuous-time systems. In Proceedings of the
21st International Conference on Hybrid Systems: Computa-
tion and Control (part of CPS Week), pages 120–129, 2018.
doi:10.1145/3178126.3178143.

[25] Kyoung-Dae Kim and Panganamala R Kumar. Cyber–
physical systems: A perspective at the centennial. Proceed-
ings of the IEEE, 100(Special Centennial Issue):1287–1308,
2012. doi:10.1109/JPROC.2012.2189792.

[26] Orna Kupferman and Moshe Y Vardi. Model checking of
safety properties. Formal methods in system design, 19:291–
314, 2001. doi:10.1023/A:1011254632723.

[27] Edward Ashford Lee and Sanjit Arunkumar Seshia. Intro-
duction to embedded systems: A cyber-physical systems ap-
proach. MIT press, 2016. doi:10.1145/1719010.1719011.

[28] Benoît Legat, Oscar Dowson, Joaquim Dias Garcia, and Miles
Lubin. Mathoptinterface: a data structure for mathematical
optimization problems. INFORMS Journal on Computing,
34(2):672–689, 2022. doi:10.1287/ijoc.2021.1067.

[29] Benoît Legat, Marcelo Forets, Christian Schilling, kpo-
tomkin, and Julia TagBot. blegat/HybridSystems.jl: v0.4.3,
2024. doi:10.5281/ZENODO.10460005.

[30] Benoît Legat, Raphaël M Jungers, and Jean Bouchat.
Abstraction-based branch and bound approach to Q-
learning for hybrid optimal control. In Learning for
Dynamics and Control, pages 263–274. PMLR, 2021.
doi:10.48550/arXiv.2011.11029.

[31] Winfried Lohmiller and Jean-Jacques E Slotine. On contrac-
tion analysis for non-linear systems. Automatica, 34(6):683–
696, 1998. doi:10.1016/S0005-1098(98)00019-3.

[32] Miles Lubin, Oscar Dowson, Joaquim Dias Garcia, Joey
Huchette, Benoît Legat, and Juan Pablo Vielma. JuMP 1.0:
Recent improvements to a modeling language for mathemat-
ical optimization. Mathematical Programming Computation,
15:581–589, 2023. doi:10.1007/s12532-023-00239-3.

[33] Frederik Baymler Mathiesen, Morteza Lahijanian, and
Luca Laurenti. IntervalMDP.jl: Accelerated Value Iter-
ation for Interval Markov Decision Processes, 2024.
doi:10.48550/ARXIV.2401.04068.

[34] Manuel Mazo Jr, Anna Davitian, and Paulo Tabuada. Pessoa:
A tool for embedded controller synthesis. In International
conference on computer aided verification, pages 566–569.
Springer, 2010. doi:10.1007/978-3-642-14295-6_49.

[35] Sebti Mouelhi, Antoine Girard, and Gregor Gössler.
CoSyMA: a tool for controller synthesis using multi-scale ab-
stractions. In Proceedings of the 16th international confer-
ence on Hybrid systems: computation and control, pages 83–
88, 2013. doi:10.1145/2461328.2461343.

[36] Stephen Prajna. Barrier certificates for nonlinear
model validation. Automatica, 42(1):117–126, 2006.
doi:10.1016/j.automatica.2005.08.007.

[37] Stephen Prajna and Ali Jadbabaie. Safety verification of hy-
brid systems using barrier certificates. In International Work-
shop on Hybrid Systems: Computation and Control, pages
477–492. Springer, 2004. doi:10.1007/978-3-540-24743-2_-
32.

[38] Gunther Reissig, Alexander Weber, and Matthias Rungger.
Feedback refinement relations for the synthesis of sym-
bolic controllers. IEEE Transactions on Automatic Control,
62(4):1781–1796, 2016. doi:10.1109/CDC.2014.7039364.

[39] Pritam Roy, Paulo Tabuada, and Rupak Majumdar. Pessoa
2.0: a controller synthesis tool for cyber-physical systems. In
Proceedings of the 14th international conference on Hybrid
systems: computation and control, HSCC ’11. ACM, April
2011. doi:10.1145/1967701.1967748.

[40] Matthias Rungger and Majid Zamani. SCOTS: A tool for the
synthesis of symbolic controllers. In Proceedings of the 19th
international conference on hybrid systems: Computation and
control, pages 99–104, 2016. doi:10.1145/2883817.2883834.

[41] Paulo Tabuada. Verification and control of hybrid systems:
a symbolic approach. Springer Science & Business Media,
2009. doi:10.1007/978-1-4419-0224-5.

[42] Yuichi Tazaki and Jun-ichi Imura. Discrete-state abstractions
of nonlinear systems using multi-resolution quantizer. In In-
ternational Workshop on Hybrid Systems: Computation and

9

http://dx.doi.org/10.48550/arXiv.2403.02190
http://dx.doi.org/10.23919/ACC55779.2023.10156175
http://dx.doi.org/10.1109/CDC45484.2021.9683448
http://dx.doi.org/10.48550/ARXIV.2403.09556
http://dx.doi.org/10.1109/CDC.2011.6160424
http://dx.doi.org/10.1145/1967701.1967730
http://dx.doi.org/10.1109/CDC51059.2022.9992495
http://dx.doi.org/10.1109/TAC.2015.2478131
http://dx.doi.org/10.1109/TAC.2009.2034922
http://dx.doi.org/10.1109/tac.2013.2295664
http://dx.doi.org/10.1145/3178126.3178143
http://dx.doi.org/10.1109/JPROC.2012.2189792
http://dx.doi.org/10.1023/A:1011254632723
http://dx.doi.org/10.1145/1719010.1719011
http://dx.doi.org/10.1287/ijoc.2021.1067
http://dx.doi.org/10.5281/ZENODO.10460005
http://dx.doi.org/10.48550/arXiv.2011.11029
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1007/s12532-023-00239-3
http://dx.doi.org/10.48550/ARXIV.2401.04068
http://dx.doi.org/10.1007/978-3-642-14295-6_49
http://dx.doi.org/10.1145/2461328.2461343
http://dx.doi.org/10.1016/j.automatica.2005.08.007
http://dx.doi.org/10.1007/978-3-540-24743-2_32
http://dx.doi.org/10.1007/978-3-540-24743-2_32
http://dx.doi.org/10.1109/CDC.2014.7039364
http://dx.doi.org/10.1145/1967701.1967748
http://dx.doi.org/10.1145/2883817.2883834
http://dx.doi.org/10.1007/978-1-4419-0224-5

The Proceedings of the JuliaCon Conferences 6(66), 2024

Control, pages 351–365. Springer, 2009. doi:10.1007/978-3-
642-00602-9_25.

[43] Ben Wooding and Abolfazl Lavaei. IMPaCT: Interval MDP
Parallel Construction for Controller Synthesis of Large-Scale
Stochastic Systems, 2024. doi:10.48550/ARXIV.2401.03555.

10

http://dx.doi.org/10.1007/978-3-642-00602-9_25
http://dx.doi.org/10.1007/978-3-642-00602-9_25
http://dx.doi.org/10.48550/ARXIV.2401.03555

	Introduction
	Abstraction-based control
	Control framework
	Classical abstraction
	Smart abstraction

	Dionysos.jl features
	Package structure
	The System module
	The Problem module
	The Optim module

	Numerical example
	Benchmarking
	Conclusions and further work
	Acknowledgment
	References

