
FlowFPX: Nimble Tools for Debugging Floating-Point
Exceptions

Taylor Allred1, Xinyi Li1, Ashton Wiersdorf1, Ben Greenman1, and Ganesh Gopalakrishnan1

1University of Utah

ABSTRACT
Reliable numerical computations are central to scientific comput-
ing, but the floating-point arithmetic that enables large-scale mod-
els is error-prone. Numeric exceptions are a common occurrence
and can propagate through code, leading to flawed results. This
paper presents FlowFPX, a toolkit for systematically debugging
floating-point exceptions by recording their flow, coalescing ex-
ception contexts, and fuzzing in select locations. These tools help
scientists discover when exceptions happen and track down their
origin, smoothing the way to a reliable codebase.

Keywords
Julia, floating-point, debugging

1. Introduction
Reliable numeric computations are central to high-performance
computing, machine learning, and scientific applications. Yet the
floating-point arithmetic that powers these computations is funda-
mentally unreliable (section 2). Exceptional values, such as Not a
Number (NaN) and infinity (Inf), can and often do arise thanks to
culprits such as roundoff error, catastrophic cancellation, singular
matrices, and vanishing derivatives [4, 5, 9, 11, 23, 34]. Develop-
ers are responsible for guarding against exceptions, but this task
is difficult because many operations can generate and propagate
exceptions. Worst of all, operations such as less-than (<) can kill an
exceptional value, leaving no trace of the problem. There is little
tool support to assist in exception debugging, thus (unsurprisingly)
a quick GitHub search reports over 4,000 open issues related to NaN
or Inf exceptions [10].

This paper introduces FlowFPX, a toolkit for debugging floating-
point exceptions (section 3) that has helped improve a variety of
applications, from ocean simulations to heat modes (section 4).
FlowFPX consists of three tools that can work together to debug
floating-point computations:

(1) The centerpiece of FlowFPX is TrackedFloats.jl, a dy-
namic analysis tool written in Julia for Julia code that monitors
exceptions and fuzzes for vulnerabilities.

(2) To visualize results, FlowFPX uses coalesced stack trace graphs
(CSTGs, or stack graphs) [15]. Our CSTG library is written in
C++ and accepts text-format stack traces as input.

(3) For programs that offload work to CUDA GPUs, the binary
instrumentation tool GPU-FPX [24] adds logging to kernels.

The toolkit is online: https://utahplt.github.io/flowfpx

Fig. 1. Floats are spread across the real number line

2. Floating-Point Exception Primer
Floating-point numbers use a finite number of bits to represent a
spectrum of points along the real number line (fig. 1). The imple-
mentation strategy is essentially that followed in scientific notation.
A floating-point number packs a sign bit, an exponent, and a fraction
part (also called the “significand” or “mantissa”) into a bit string.
Typical strings are 64 or 32 bits long, but 16-bit and 8-bit formats
are on the rise [17, 26, 29]. This representation supports very small
and very large numbers in a narrow range of bits:� �
julia > floatmax (Float64)
1 .7 976931348623157 e308
julia > floatmin (Float64)
2 .2 250738585072014 e-3 08� �

The flip side is that most real numbers fall into the gaps between
floating-point numbers and must be rounded, which introduces er-
ror and can lead to surprising results. For example, adding the tiny
Planck constant to the large Avogadro constant results in the Avo-
gadro constant after rounding:� �
julia > planck = 6 .6 2607015 e-3 4
6 .6 2607015 e-3 4
julia > avogadro = 6 .0 2214076 e23
6 .0 2214076 e23
julia > avogadro + planck == avogadro
true� �

This is an extreme example, but many operations on floating-
point numbers closer in magnitude induce a loss of accuracy. Refer
to the literature for more details, e.g., [21, 35, 28].

2.1 Exceptions and Exceptional Values
The IEEE 754 floating-point standard [16] defines exceptions and
exceptional values as the outcome of operations that have “no single
universally acceptable result” [31]. For example, dividing by zero
and exceeding the Float64 range both lead to exceptions:

1

https://utahplt.github.io/flowfpx

The Proceedings of the JuliaCon Conferences 7(67), 2025

NaN
Born

NaN
Propagated

NaN
Propagated

NaN
Killed

Gen
x ← -42.0
y ← √x
y holds NaN

Prop

NaN + 42
⇒ NaN

Prop

NaN - NaN
⇒ NaN

Kill

NaN < 42
⇒ false

No NaN-check needed here NaN-check needed here!

Fig. 2. Gen, Prop, Kill: Lifetime of an exceptional value� �
julia > 0 / 0
NaN
julia > avogadro ˆ avogadro
Inf
julia > log (0)
- Inf
julia > Inf + NaN
NaN� �

IEEE 754 defers the question of how to handle such exceptions
to application code. It is up to developers to watch for NaN, Inf,
and subnormal numbers (underflow) and implement an appropriate
repair. This is a difficult task because of the approximations inherent
to floating point. Even an apparently-safe division could result in a
NaN if its denominator gets truncated to zero. Some NaNs might be
spurious while others might be fatal, but in any event anticipating
the various exceptions is a burden. All too often, exceptional values
go unhandled and flow through the code.

2.2 Lifetime of an Unhandled Exceptions
Unhandled exceptional values have a lifetime: they are born, or gen-
erated, by some operation; they propagate through other operations;
and they either appear in the program output, go out of scope, or
get killed by a numeric operation. Figure 2 summarizes this gen-
prop-kill process. The gens and props are straightforward; see above
for examples (section 2.1). The kills often arise from numeric com-
parisons (<, =, etc.), but exponents (1^NaN) and over-eager matrix
optimizations [5] can kill exceptions as well.

To illustrate the perils of killed exceptions, consider the following
two ways of finding the maximum value in a list. The first compares
numbers with <= while the second uses the built-in max function:� �
function max1 (lst)

max_seen = 0 .0
for x in lst

swap if x is not too small
if ! (x <= max_seen)

max_seen = x
end

end
max_seen

end

function max2 (lst)
foldl (max , lst)

end� �
For lists with a NaN inside, the functions can give different results

because <= kills NaNs whereas max propagates them:� �
julia > max1 ([1, 5, NaN , 4])
4 .0
julia > max2 ([1, 5, NaN , 4])
NaN� �

Exn. Input? ⇒ Exn. Output? = Event
× ⇒ ✓ = gen
✓ ⇒ ✓ = prop
✓ ⇒ × = kill

Fig. 3. How to classify operations that see exceptions

Not only is the result from max1 problematic for obscuring the
fact that there was a NaN in the list, the result is arguably wrong! The
result from max2 at least shows that a NaN was in the works, though
in a realistic setting it may not be clear where the NaN came from.
Both versions would thus benefit from tools that track exceptions
across their lifetime. FlowFPX can help.

3. FlowFPX
FlowFPX (FPX: Floating Point eXception) is a toolkit for tracking
down floating-point exceptions. The primary tools in the FlowFPX
toolkit are TrackedFloats.jl, which records lifetimes and en-
ables fuzzing, and stack graphs (more precisely, CSTGs), which
visualize the flow of exceptions. GPU-FPX is a third component
of FlowFPX that tracks floating-point exceptions inside GPU ker-
nels [24]. This section covers each tool in detail.

3.1 TrackedFloats.jl

TrackedFloats.jl tracks exceptional values in Julia programs
across their gen-prop-kill lifetime and can fuzz code for vulner-
abilities by injecting a NaN or Inf as the result of an operation.
TrackedFloats.jl is implemented in Julia as a library and is
available on JuliaHub:

https://juliahub.com/ui/Packages/TrackedFloats

3.1.1 Tracking Exceptional Values. TrackedFloats.jl mon-
itors NaN and Inf exceptions by overloading arithmetic operations
and logging key events. When the input to an operation is exception-
free but the output is exceptional, the operation is a gen event (fig. 3).
When the input and output contain exceptions, the operation is a
prop event. And when the input contains an exception but the output
does not, the operation is a kill event. Put together, the log of all
gens, props, and kills sheds light of how various exceptions traveled
across the program. The logs also record the call context (stack
trace) and the arguments to the operation as a starting point for
debugging efforts.

TrackedFloats.jl writes logs to three files: one for gen events,
one for props, and one for kills. This way, discovering where a NaN
came from is a matter of sifting through the gen file. Users can also
lower the overhead of logging by turning it off for prop events.

The instrumentation works through custom floating-point types:
TrackedFloat64, TrackedFloat32, and TrackedFloat16. De-
velopers must opt in to TrackedFloats.jl by wrapping num-
bers in a custom type. From then on, tracking is automatic and
extends transitively to all outputs of tracked operations. Multiplying
a Float64 value with a TrackedFloat64, for example, yields a
TrackedFloat64 to continue the logging trail.

Crucially, TrackedFloats.jl does nothing to modify the bit-
level representation of floats or exceptions. The tracked version
of, say, a NaN, points to the original exceptional value. Thus NaN-
packing and other creative uses of the payload continue to work—
provided the code does not use some other Julia operation that does
not preserve NaNs bit-for-bit.1

1https://github.com/JuliaLang/julia/issues/48523

2

https://juliahub.com/ui/Packages/TrackedFloats
https://github.com/JuliaLang/julia/issues/48523

The Proceedings of the JuliaCon Conferences 7(67), 2025

3.1.2 Fuzzing. Julia’s operator overloading lets us fuzz code
from the inside out. Each overloaded function serves as a hook where
TrackedFloats.jl can decide whether to observe the operation
or replace the original result with an exceptional value. Injecting
faults in a random way [12], also known as fuzzing, can discover
vulnerabilities in a large codebase. Demmel et al. propose essentially
the same idea for BLAS and LAPACK [5].

When fuzzing is enabled, every time TrackedFloats.jl inter-
cepts a floating-point operation, it decides whether or not it should
return a NaN instead of the actual computed value. This decision is
based on several parameters:

— active::Bool fuzz only when set to true.
— odds::Int64 inject at each candidate location with probability
1/odds.

— n_inject::Int64 upper bound on the number of NaNs to in-
ject.

— functions::ArrayString limit fuzzing to the dynamic extent
of the listed functions.

— libraries::ArrayString limit fuzzing to functions from the
following libraries

TrackedFloats.jl looks at these parameters in conjunction
with stack trace at the point where the operation was intercepted
to make the decision. When fuzzing is active (active == true)
and there are NaNs remaining to be injected (n_inject > 0) and
rand(1:odds) returns 1, then TrackedFloats.jl inspects the
current stack trace to see if the point is in the dynamic extent of the
declared functions or libraries (if any). When all these condi-
tions are met, TrackedFloats.jl returns a NaN instead of calling
the overloaded operation. The value n_inject is decremented be-
fore the next operation gets intercepted.

Every intercepted operation is a candidate for injection, which
means that injected NaNs can appear deep inside of an algorithm in-
stead of merely at its toplevel inputs. This can reveal vulnerabilities
that are difficult to catch with input-based testing. The parameters
functions and libraries let users control how deep to fuzz; for
example, it is often helpful to test specific libraries and avoid trusted
standard ones.

When fuzzing reveals an error, the next step is to craft a regres-
sion test to guide repairs. TrackedFloats.jl therefore records
the sequence of injections that it makes during a fuzzing run and
enables a replay of any recording after the fact. Replay runs proceed
deterministically so that developers can harden their code and check
that the fixes remove the error. When running a replay, each inter-
cepted operation consults the reply file (instead of the stack trace
and fuzzing parameters) to decide whether or not to return a NaN
from the computation.

3.1.3 Internals. TrackedFloats.jl takes advantage of Ju-
lia’s operator overloading to track exceptions and fuzz for vulnera-
bilities. For example, below is a variant of + that is overloaded for
TrackedFloat64. It calls the basic + (or injects a NaN) and checks
for exceptions before returning: This lets TrackedFloats.jl inter-
cept all floating-point operations involving TrackedFloat types.� �
function +(x:: TrackedFloat64 , y:: TrackedFloat64)

result = run_or_inject (+, x. val , y. val)
check_error (+, result , x. val , y. val)
TrackedFloat64 (result)

end� �

Frame A
Frame B
Frame C
Frame D

Frame A
Frame B
Frame E
Frame F

Frame A
Frame B
Frame C
Frame D

Frame A
Frame B
Frame E
Frame D

Frame A

Frame C

4

2

Frame D

2

Frame E

2

Frame F

11

Frame B

Fig. 4. From stack traces (left) to stack graph (right)

Every arithmetic operation requires a similar overloading. The
implementation of TrackedFloats.jl uses a metaprogramming
technique adapted from Sherlogs [20] to abstract over the com-
mon patterns. For every binary operation, the library creates an
overloading similar to the one for + above. Unary operations and
others work analogously. This approach saved thousands of lines
of code. The implementation weighs in at 218 lines and defines
645 overloaded function; assuming 5 lines of code per function, a
handwritten version would require over 3,000 lines.

3.2 Stack Graphs
TrackedFloats.jl can produce copious amounts of log files
which can be challenging to sift through manually. Coalesced stack
trace graphs (CSTGs or stack graphs for short) provide a way to
visualize large amounts of stack traces in a compact form [15]. This
technique pairs well with TrackedFloats.jl and eases the task
of analyzing log files.

Figure 4 illustrates the construction of a stack graph from a
collection of stack traces. Each trace on the left contributes nodes
and edges to the graph on the right. Repeated edges get emphasized
with darker lines and larger counts.

Reading bottom-up, a stack graph based on the gen events in
a program highlights the contexts that frequently produced excep-
tional values. Using fig. 4 as an example, Frame D produced three
exceptions, two of which arose under Frame C. In a large program
with many exceptions, stack graphs offer a way to prioritize debug-
ging efforts: go for the heavily-trodden paths first.

3.3 GPU-FPX
Many programs offload work onto GPUs, which are no less suscep-
tible to floating-point exceptions than CPUs. In fact, GPU programs
are worse off because they lack exception-handling mechanisms
from the CPU world [23]. Since TrackedFloats.jl instruments
Julia programs, it cannot help directly; however, the companion tool
GPU-FPX instruments GPU kernels (specifically CUDA) to detect
and report floating-point exceptions [24]. There is no formal con-
nection between TrackedFloats.jl and GPU-FPX. Developers
who choose to apply both tools to the respective Julia and CUDA
components of their code can gain insights for accelerated programs.

3

The Proceedings of the JuliaCon Conferences 7(67), 2025

4. Case Studies
FlowFPX has helped to debug exceptions and fuzz for issues in a
variety of settings, some synthetic and some realistic. The case stud-
ies include a shallow water simulation, the OrdinaryDiffEq.jl
solver, and a Bayesian inference library.

4.1 ShallowWaters.jl

ShallowWaters.jl simulates the flow of water over a seabed [18,
19]. The library has dozens of parameters that a scientist can experi-
ment with. One notable parameter is the Courant-Friedrichs-Lewy
(CFL) number, which roughly describes the size of the time step
to take in running the simulation. A small CFL number makes the
simulation run slowly, but accurately; a large number speeds it up
but loses precision because the system does not get enough time to
propagate information.

Normal values for the CFL number range between zero and one.
With a CFL of 0.9, the shallow water simulation produces the graph
on the left half of fig. 5 showing current speed in a rectangular basin.
Raising the CFL too high, to 1.6, causes trouble (fig. 5, right) with
large, white regions where the current speed is NaN instead of a
normal value.

Running TrackedFloats.jl on the high-CFL simulation re-
veals where the simulation drifted from numbers to NaN exceptions.
The first step in applying TrackedFloats.jl is to convert rele-
vant floats to tracked floats, e.g., Float32 to TrackedFloat32.
For ShallowWaters.jl, this step is easy because the simulation is
parameterized by a floating-point type for internal use. Swapping in
a tracked type is enough:� �
run_model (T= TrackedFloat32 ,

cfl = 10 ,
nx = 100 ,
Ndays = 100 ,
L_ratio =1,
bc =" nonperiodic ",
wind_forcing_x =" double_gyre ",
topography =" seamount ")� �

With tracking, the simulation runs as before, producing an ugly
graph. It additionally outputs logs for all gen, prop, and kill events
as they happen. Below is one event from the gen logs:� �
-([- Inf , - Inf]) TF / TrackedFloat . jl : 106
momentum_u ! SW / rhs . jl : 246
rhs_nonlinear ! SW / rhs . jl : 50
rhs ! SW / rhs . jl : 14 [inlined]
time_integration SW / time_integration . jl : 77
run_model SW / run_model . jl : 37
top - level� �

We can see that the NaN appeared as the result of subtracting
two infinities (-Inf - -Inf). The trace further shows that this
subtraction happens inside the function momentum_u! on line 246
of the rhs.jl file. This solves the mystery of where one NaN came
from, but raises a new question about the source of the Inf value.
The logs for Inf gens have an answer:� �
ˆ([-1 .5 15 f31 , 2]) TF / TrackedFloat . jl : 138
literal_pow () intfuncs . jl : 325
...
materialize (ˆ) broadcast . jl : 860
top - level getproperty (...) examples / sw_nan_tf . jl : 14� �

cfl = 0.9 cfl = 1.5
Current
Speed

Fast

Slow

Fig. 5. Raising the CFL number creates white gaps due to NaNs

run_model(+,Type{Float32}, 9:Parameter)
ShallowWaters/run_model.jl:37

time_integration(…)
ShallowWaters/time_integration.jl:77

time_integration(…)
ShallowWaters/time_integration.jl:78

rhs!()
ShallowWaters/rhs.jl:14

continuity!(…)
ShallowWaters/continuity.jl:96

rhs_nonlinear!(…)
ShallowWaters/rhs.jl:50

rhs_nonlinear!(…)
ShallowWaters/rhs.jl:51

momentum_u!(…)
ShallowWaters/rhs.jl:246

momentum_v!(…)
ShallowWaters/rhs.jl:275

-(+,TrackedFloat32, 9:TrackedFloat32)
FloatTracker/TrackedFloat:102

+(+,TrackedFloat32, 9:TrackedFloat32)
FloatTracker/TrackedFloat:102

continuity_itself!(…)
ShallowWaters/continuity.jl:65

top-level tuple(…)
examples/sw_nan_tf.jl:7

231

69 162

69

39

39

39

30

30

30

162

162

162

Fig. 6. Stack graph for NaN gens in ShallowWaters.jl

This Inf came from an exponent that overflowed the float type
(-1.515e31^2). TrackedFloats.jl has shown exactly which nu-
meric values in which operation caused exceptions to occur.

4.1.1 Stack Graphs for a Bigger Picture. While the logs for
ShallowWaters.jl contain useful information, there is an over-
whelming amount of it. There are over ten thousand lines in the
gen file alone. Converting these logs to a stack graph gives a quick
overview of the most common paths to exceptional values.

Figure 6 presents the stack graph for NaN gen events in
ShallowWaters.jl with the high CFL number. Reading bottom-
up, every NaN came from calls to the ‘-’ and ‘+’ operations. Calls to
‘+’ account for most of the NaNs. These NaNs arose in two different
contexts: a momentum calculation (30 NaNs) and a continuity step
(162 NaNs). Moving to the top of the graph, it shows that the func-
tion run_model drove the entire simulation. With this overview of
the program, a promising next step is to guard against NaNs in the
momentum and continuity functions.

4.1.2 Stack Graph Differences. Graph diffing works well for
stack graphs; it shows how flows in the program evolved from one
stage to another. Figure 7 illustrates one diff in the context of NaN
gens for ShallowWaters.jl: it compares the first 10% of gen
events to the latter 90% of gens. The positive numbers and green
lines indicate flows that are new in the latter part, and the negative
numbers and red lines show flows that disappeared in the latter part.
A domain expert might use these clues to find where an instability
started in the first part of the program. In this case, the function

4

The Proceedings of the JuliaCon Conferences 7(67), 2025

time_integration(…)

rhs!(…)

rhs_nonlinear!(…)

momentum_v!(…) momentum_u!(…)

+(…) -(…)

continuity!(…)

continuity_itself!(…)

run_model(…)
154

25 154

28

-3

-3

28

28154

Fig. 7. Stack graph diff

momentum_u! showed up only in the beginning of the logs—it may
be an effective point to check for NaNs.

4.2 Fuzzing from NBody to ODE
We applied the fuzzing abilities of TrackedFloats.jl to the
NBodySimulator.jl package.2 To avoid injecting in the standard
library or other dependencies, we initially configured the fuzzer
to inject NaNs only when inside of a function from the simulator.
Surprisingly, fuzzing injected zero exceptional values even when the
fuzzer’s odds were configured to force injection at the first available
opportunity. It turns out that all the floating-point operations for the
simulation happened within the OrdinaryDiffEq.jl solver.3

Fuzzing on OrdinaryDiffEq.jl led to a curious situation. The
library itself reported a NaN and printed a message stating that it
would exit. However, after printing that message, the program went
into an infinite loop. Using stack graphs to guide our search, we
found a NaN kill that manifested repeatedly in the logs. The stack
traces for that kill originated from inside the file solve.jl:� �
<([NaN , 3 .0 e6]) at TF / TrackedFloat . jl : 193
solve ! at ODE / solve . jl : 515
...� �

The relevant part of solve.jl contains a pair of loops. With
injection, the variable tdir holds a NaN, stopping all productivity:� �
while ! isempty (time_stops)

while tdir * t < first (time_stops)
do integration work
pop_off (time_stops)

end
end� �

In more detail, the NaN for tdir propagates though the multipli-
cation and gets killed by the < comparison. Hence the condition for

2https://github.com/SciML/NBodySimulator.jl
3https://github.com/SciML/OrdinaryDiffEq.jl

inner while loop is always false, which means the outer loop never
ends up with an empty list.

This is a real-world example of how NaN kills can affect control
flow, and we filed an issue for it.4 Fortunately, the problem in this
case is benign as the code was already trying to halt.

4.3 Finch
Finch is a domain-specific language for specifying PDEs [14].5 In
the spirit of FEniCS [2] and related tools [13, 25, 7, 33], Finch
helps scientists quickly convert math into code. What sets Finch
apart is its flexibility. It supports multiple discretization methods
(finite element and finite volume) and multiple backends (Julia, C++,
DENDRO [8]). Furthermore it strives to output code that humans can
easily fine-tune.

Fuzzing with TrackedFloats.jl revealed two places where
Finch needed protection against user input. The first was when
reading an input mesh.6 A NaN injected in the mesh led to a crash
further on:� �

BoundsError : attempt to access 1- element
Vector { Int64 } at index [2]� �

Before accessing the input, Finch needed to check for NaNs. The
second place was in setting bounds for the solver.7 Here, a NaN
could leave bounds uninitialized, leading to a bounds error. Addi-
tionally, TrackedFloats.jl and stack graphs have been useful for
identifying NaNs that appear in unstable heat simulations written in
Finch.

4.4 Oceananigans.jl

Oceananigans.jl [32] is simulation package for incompressible
fluid dynamics that can generate code for Nvidia GPUs. For ex-
ample, the following program (from the project readme) simulates
turbulence:� �
using Oceananigans
grid = RectilinearGrid (GPU (),

size =(128 , 128), x=(0, 2π), y=(0, 2π),
topology =(Periodic , Periodic , Flat))

model = NonhydrostaticModel (; grid ,
advection = WENO ())

ϵ (x, y, z) = 2 rand () - 1
set !(model , u= ϵ , v= ϵ)
simulation = Simulation (model ;

∆t=0 .0 1, stop_time =4)
run !(simulation)� �

GPU-FPX provides detailed feedback on this program. The out-
put in fig. 8 shows that 21 kernels appear and generate six floating-
point exceptions. There are three NaNs, one Inf, and two division
by zero errors. The report is a starting point for further investigation
of the reliability of the example.

4.5 RxInfer.jl

We discovered an open issue in the RxInfer.jl library related to
NaN detection and suggested TrackedFloats.jl to the develop-

4https://github.com/SciML/OrdinaryDiffEq.jl/issues/1939
5Not to be confused with the loop optimizer Finch.jl [1].
6https://github.com/paralab/Finch/issues/16
7https://github.com/paralab/Finch/issues/17

5

https://github.com/SciML/NBodySimulator.jl
https://github.com/SciML/OrdinaryDiffEq.jl
https://github.com/SciML/OrdinaryDiffEq.jl/issues/1939
https://github.com/paralab/Finch/issues/16
https://github.com/paralab/Finch/issues/17

The Proceedings of the JuliaCon Conferences 7(67), 2025

-- FP64 Operations --
Total NaN: 2
Total INF: 1
Total subnormal: 0
Total div0: 2

-- FP32 Operations --
Total NaN: 1
Total INF: 0
Total subnormal: 0
Total div0: 0

-- Other Stats --
Kernels: 21

Fig. 8. Example GPU-FPX output

ers.8 Within a day, they were able to track down the location of an
important NaN gen. This success came with little input from our
end; in fact, the application program was closed-source. We merely
explained how to use TrackedFloats.jl by wrapping inputs in a
tracked type.

5. Related Work
5.1 Error Analysis
Demmel et al. [5] examine floating-point exceptional value handling
in BLAS and LAPACK, identify several inconsistencies, and pro-
pose an API for debugging and adding determinism. The proposal
includes an extension to the INFO_ARRAY parameter with fields that
record gen-prop-kill information. It also includes fuzzing, which we
realize in TrackedFloats.jl.

Toronto and McCarthy [35] propose a test-driven method for
detecting numeric error: plot the results of an expression on a range
of inputs and look for sharp deviations, or badlands. They point out
several ways to rewrite code to avoid badlands by rewriting code in
a semantics-preserving way.

Herbie [30] automatically rewrites arithmetic expressions to
reduce floating-point error. This would combine well with
TrackedFloats.jl: first identify the location of a NaN, ask Herbie
to find a repair. The Odyssey [27] workbench provides an interactive
interface to Herbie.

5.2 Diagnosing floating-point exceptions
The Julia library Sherlogs.jl [20] inspired our use of a custom
number type to intercept operations on a number. In contrast to
TrackedFloats.jl which monitors for exceptional values and
logs stack traces at interesting points in their lifetime, Sherlogs.jl
tracks and reports the range of values seen over the course of a
computation. This is intended to provide insight into whether or not
a library could tolerate a lower-precision floating-point format.

FPSpy [6] is an LD_PRELOAD shared library that works on un-
modified x86 binaries. It monitors a program during execution for
operations that generate an exception, such as division by zero, un-
derflow, and overflow. By contrast to TrackedFloats.jl, it does
not track prop or kill events. FPSpy has the advantage of being
lightweight enough to run on production code for certain loads.

5.3 Stack Graphs
Our stack graphs utilize the CSTG library for coalesced stack trace
graphs [15]. In turn, CSTGs build on the STAT tool from LLNL [3].
STAT collects, analyzes, and visualizes stack traces from concurrent
processes to highlight anomalies. It produces visualizations similar
to those of CSTG, thought CSTG offers more compact views and
supports diffs.

8https://github.com/biaslab/RxInfer.jl/issues/116

5.4 GPU Exception Tracking
FPChecker [22] is a tool to report floating-point exceptions occur-
ring on the GPU. FPChecker relies on LLVM-level instrumentation
of GPU kernels, and so cannot run on the plethora of closed-source
GPU kernels in usage today. BinFPE [23] is another tool in the
same space; BinFPE performs SASS-level analysis of GPU kernels,
but is limited in that it is slow and does not catch errors that alter
control flow. The latter deficiency is particularly worrisome, as we
have seen, silent NaN kills can invalidate results without the user
noticing. GPU-FPX [24] improves on the work of FPChecker and
BinFPE by being more performant and catching a wider set of errors,
including those that alter control flow. GPU-FPX is a shared library
that, like FPSpy uses LD_PRELOAD to work on unmodified binaries.
GPU-FPX runs on CUDA cores from NVIDIA and reports total
numbers of exceptional values. Like TrackedFloats.jl, GPU-
FPX can catch NaN gens and kills, but it does this on the GPU
where TrackedFloats.jl doesn’t apply. Despite these improve-
ments, GPU-FPX is limited by the closed-source nature of common
GPU cores, and cannot report at the rich level of source detail that
TrackedFloats.jl can.

6. Discussion
Lightweight tools for error analysis that can quickly identify floating-
point problems and suggest repairs are an important topic. The
number of scale of scientific application has grown tremendously
over the years. For small teams that cannot afford a full-time analyst,
tools like FlowFPX fill a critical role.

FlowFPX it itself an evolving toolkit. Below we discuss some
topics for future work.

6.1 Performance
TrackedFloats.jl incurs significant overhead on the order of
100x slower than a non-instrumented run of the same program. It
is a debugging tool, not a production tool. To put this number into
context, Valgrind runs with a similar level of slowdown.

In addition to the cost incurred by intercepting floating-point op-
erations, gathering stack traces is expensive. We observe a 10x slow-
down on ShallowWaters.jl with logging disabled. We recom-
mend that users of TrackedFloats.jl make use of the maxLogs
and exclude_stacktrace configuration options to limit the num-
ber and kind of logs gathered, and thereby reduce the number of
calls to stacktrace(). Stack traces are essential to decide where
to inject a fault when fuzzing, but we defer them as late as possible
to maximize performance.

6.2 Enhanced Fuzzing
While fuzzing is useful for discovering issues, its success rate is low
because every floating-point operation is a candidate for injection.
Even operations that are already well-defended against NaNs are
candidates. TrackedFloats.jl could use two sorts of tools for
improving injection. First, fine-grained control to let users decide
where not to inject. Second, tools for understanding the context of an
injection point after the fact. Program slicing is especially relevant
to the latter point and effectively what we did by hand when fuzzing
Finch (section 4.3). For each operation, an expert needs to study the
values that feed into it to decide whether they are protected or not.

6.3 Tracking Exceptions in External Libraries
TrackedFloats.jl is limited to Julia code. It cannot track the life-
time of exceptional values in external libraries, such as GPU kernels

6

https://github.com/biaslab/RxInfer.jl/issues/116

The Proceedings of the JuliaCon Conferences 7(67), 2025

or C programs. For GPUs it relies on GPU-FPX, through the connec-
tion between these tools is loose. In the future, TrackedFloats.jl
would benefit from an API to plug in tools for external libraries,
gather their output, and present a comprehensive view of exceptions
in a multi-language program.

6.4 Interface Concerns, Multi-Threading
TrackedFloats.jl could be extended to monitor events and val-
ues that go beyond exceptions, such as very-large or very-small
numbers according to bounds supplied by the user. On a similar
note, the interface to TrackedFloats.jl is primitive: users ex-
press interest in a number by wrapping it in a constructor such as
TrackedFloat64. Helper functions that track data structures and
provide a default float size would make experimentation easier.

TrackedFloats.jl stores its configuration and event logs in
global data structures, making it unsafe for a multithreaded envi-
ronment. Adding locks would restore safety, but perhaps a richer
interface is in order. Individual threads may wish to configure local
logging for better data organization and performance.

7. Acknowledgments
Thanks to the Sherlogs.jl developers for inspiring the architec-
ture of TrackedFloats.jl. Thanks to the RxInfer.jl developers
for testing TrackedFloats.jl and for feedback on its user inter-
face. Thanks to Alex Larsen and Rob Durst for comments on an
early draft. This work is supported by NSF grant 2030859 to the
CRA for the CIFellows project, and DOE ASCR Award Number
DE-SC0022252 and NSF CISE Awards 1956106 and 21241.

8. References

[1] Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and
Saman Amarasinghe. Looplets: A language for struc-
tured coiteration. In CGO, pages 41–54. ACM, 2023.
doi:10.1145/3579990.3580020.

[2] M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet,
A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N.
Wells. The FEniCS project version 1.5. Archive of Numerical
Software, 3, 2015. doi:10.11588/ans.2015.100.20553.

[3] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gre-
gory L. Lee, Barton P. Miller, and Martin Schulz. Stack Trace
Analysis for Large Scale Debugging. In IPDPS, pages 1–10.
IEEE, 2007. doi:10.1109/IPDPS.2007.370254.

[4] Dorra Ben Khalifa, Xinyi Li, Ignacio Laguna, Matthieu Mar-
tel, and Ganesh Gopalakrishnan. Toward increasing trust in
exascale simulations. In XLOOP, pages 26–31. IEEE, 2022.
doi:10.1109/XLOOP56614.2022.00010.

[5] James Demmel, Jack J. Dongarra, Mark Gates, Greg Henry,
Julien Langou, Xiaoye S. Li, Piotr Luszczek, Weslley S.
Pereira, E. Jason Riedy, and Cindy Rubio-González. Pro-
posed consistent exception handling for the BLAS and
LAPACK. In Correctness@SC, pages 1–9. IEEE, 2022.
doi:10.1109/Correctness56720.2022.00006.

[6] Peter Dinda, Alex Bernat, and Conor Hetland. Spying on
the Floating Point Behavior of Existing, Unmodified Sci-
entific Applications. In HPDC, pages 5–16. ACM, 2020.
doi:10.1145/3369583.3392673.

[7] Dune. DUNE numerics, 2023. https://www.
dune-project.org/. Accessed 2023-06-06.

[8] Milinda Fernando, David Neilsen, Eric W. Hirschmann, and
Hari Sundar. A scalable framework for adaptive computational
general relativity on heterogeneous clusters. In SC, page 1–12.
ACM, 2019. doi:10.1145/3330345.3330346.

[9] FPChecker. Open source reports, 2023. https://fpchecker.
org/open-source-reports.html. Accessed 2023-06-16.

[10] GitHub. Issue search: NaN+infinity, 2023. https:
//github.com/search?q=NaN+infinity++state%
3Aopen&type=issues&ref=advsearch. Accessed 2023-
06-16.

[11] Ganesh Gopalakrishnan, Ignacio Laguna, Ang Li, Pavel
Panchekha, Cindy Rubio-González, and Zachary Tat-
lock. Guarding numerics amidst rising heterogene-
ity. In Correctness@SC, pages 9–15. IEEE, 2021.
doi:10.1109/Correctness54621.2021.00007.

[12] Richard Hamlet. Random testing. Encyclopedia of Software
Engineering, 2:971–978, 1994. doi:10.1002/0471028959.

[13] F. Hecht. New development in FreeFem++. Journal of Numer-
ical Mathematics, 20(3-4):251–265, 2012. doi:10.1515/jnum-
2012-0013.

[14] Eric Heisler, Aadesh Deshmukh, and Hari Sundar. Finch: Do-
main Specific Language and Code Generation for Finite El-
ement and Finite Volume in Julia. In ICCS, pages 118–132.
Springer, 2022. doi:10.1007/978-3-031-08751-6_9.

[15] Alan Humphrey, Qingyu Meng, Martin Berzins, Diego
Caminha B. De Oliveira, Zvonimir Rakamaric, and
Ganesh Gopalakrishnan. Systematic Debugging Methods
for Large-Scale HPC Computational Frameworks. Com-
puting in Science & Engineering, 16(3):48–56, 2014.
doi:10.1109/MCSE.2014.11.

[16] IEEE Standard for Binary Floating-Point Arith-
metic. ANSI/IEEE Std 754-1985, pages 1–20, 1985.
doi:10.1109/IEEESTD.1985.82928.

[17] Milan Klöwer. Low-Precision Climate Computing: Preserv-
ing Information despite Fewer Bits. PhD thesis, University of
Oxford, 2021.

[18] Milan Klöwer, Peter D. Düben, and T. N. Palmer. Number
Formats, Error Mitigation, and Scope for 16-Bit Arithmetics
in Weather and Climate Modeling Analyzed With a Shallow
Water Model. Journal of Advances in Modeling Earth Systems,
12(10), 2020. doi:10.1029/2020MS002246.

[19] Milan Klöwer, Peter D. Düben, and Tim N. Palmer. Posits
as an alternative to floats for weather and climate models. In
Conference for Next Generation Arithmetic, pages 1–8. ACM,
2019. doi:10.1145/3316279.3316281.

[20] Milan Klöwer and OnButtonUp. Milankl/Sherlogs.jl, 2021.
doi:10.5281/ZENODO.5115765.

[21] Donald Ervin Knuth. The Art of Computer Programming, Vol-
ume 2: Seminumerical Algorithms. Addison-Wesley, 3rd edi-
tion, 1997.

[22] Ignacio Laguna. FPChecker: Detecting floating-point excep-
tions in GPU applications. In ASE, pages 1126–1129. IEEE,
2019. doi:10.1109/ASE.2019.00118.

[23] Ignacio Laguna, Xinyi Li, and Ganesh Gopalakrishnan.
BinFPE: accurate floating-point exception detection for
GPU applications. In SOAP, pages 1–8. ACM, 2022.
doi:10.1145/3520313.3534655.

[24] Xinyi Li, Ignacio Laguna, Katarzyna Swirydowicz, Bo Fang,
Ang Li, and Ganesh Gopalakrishnan. Design and evaluation of
GPU-FPX: A low-overhead tool for floating-point exception

7

https://nsf.gov/awardsearch/showAward?AWD_ID=2030859&HistoricalAwards=false
https://cifellows2020.org
http://dx.doi.org/10.1145/3579990.3580020
http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.1109/IPDPS.2007.370254
http://dx.doi.org/10.1109/XLOOP56614.2022.00010
http://dx.doi.org/10.1109/Correctness56720.2022.00006
http://dx.doi.org/10.1145/3369583.3392673
https://www.dune-project.org/
https://www.dune-project.org/
http://dx.doi.org/10.1145/3330345.3330346
https://fpchecker.org/open-source-reports.html
https://fpchecker.org/open-source-reports.html
https://github.com/search?q=NaN+infinity++state%3Aopen&type=issues&ref=advsearch
https://github.com/search?q=NaN+infinity++state%3Aopen&type=issues&ref=advsearch
https://github.com/search?q=NaN+infinity++state%3Aopen&type=issues&ref=advsearch
http://dx.doi.org/10.1109/Correctness54621.2021.00007
http://dx.doi.org/10.1002/0471028959
http://dx.doi.org/10.1515/jnum-2012-0013
http://dx.doi.org/10.1515/jnum-2012-0013
http://dx.doi.org/10.1007/978-3-031-08751-6_9
http://dx.doi.org/10.1109/MCSE.2014.11
http://dx.doi.org/10.1109/IEEESTD.1985.82928
http://dx.doi.org/10.1029/2020MS002246
http://dx.doi.org/10.1145/3316279.3316281
http://dx.doi.org/10.5281/ZENODO.5115765
http://dx.doi.org/10.1109/ASE.2019.00118
http://dx.doi.org/10.1145/3520313.3534655

The Proceedings of the JuliaCon Conferences 7(67), 2025

detection in NVIDIA GPUs. In HPDC, pages 59–71. ACM,
2023. doi:10.1145/3588195.3592991.

[25] Sandra Macià, Pedro J. Martínez-Ferrer, Sergi Mateo, Vicenç
Beltran, and Eduard Ayguadé. Assembling a high-productivity
DSL for computational fluid dynamics. In PASC, pages 11:1–
11:11. ACM, 2019. doi:10.1145/3324989.3325721.

[26] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Mar-
ius Cornea, Pradeep Dubey, Richard Grisenthwaite, Sang-
won Ha, Alexander Heinecke, Patrick Judd, John Ka-
malu, Naveen Mellempudi, Stuart F. Oberman, Moham-
mad Shoeybi, Michael Y. Siu, and Hao Wu. FP8 for-
mats for deep learning. CoRR, abs/2209.05433, 2022.
doi:10.48550/arXiv.2209.05433.

[27] Edward Misback, Caleb C. Chan, Brett Saiki, Eunice Jun,
Zachary Tatlock, and Pavel Panchekha. Odyssey: An in-
teractive workbench for expert-driven floating-point expres-
sion rewriting. In UIST, pages 77:1–77:15. ACM, 2023.
doi:10.1145/3586183.3606819.

[28] Jean-Michel Muller, Nicolas Brunie, Florent De Dinechin,
Claude-Pierre Jeannerod, Mioara Joldes, Vincent Lefèvre,
Guillaume Melquiond, Nathalie Revol, and Serge Torres.
Handbook of Floating-Point Arithmetic. Springer, 2018.
doi:10.1007/978-3-319-76526-6.

[29] P3109. IEEE working group P3109 interim report
on 8-bit binary floating-point formats, 2024. https:
//github.com/P3109/Public/blob/main/Shared%
20Reports/P3109%20WG%20Interim%20Report.pdf,
Accessed 2024-04-16.

[30] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and
Zachary Tatlock. Automatically improving accuracy for float-
ing point expressions. In PLDI, pages 1–11. ACM, 2015.
doi:10.1145/2737924.2737959.

[31] David J. Priest. Handling IEEE 754 invalid operation excep-
tions in real interval arithmetic, 1997. https://j3-fortran.
org/doc/year/97/97-172.pdf, Accessed 2023-08-16.

[32] Ali Ramadhan, Gregory LeClaire Wagner, Chris Hill, Jean-
Michel Campin, Valentin Churavy, Tim Besard, Andre
Souza, Alan Edelman, Raffaele Ferrari, and John Marshall.
Oceananigans.jl: Fast and friendly geophysical fluid dynam-
ics on GPUs. Journal of Open Source Software, 5(53), 2020.
doi:10.21105/joss.02018.

[33] Florian Rathgeber, David A. Ham, Lawrence Mitchell,
Michael Lange, Fabio Luporini, Andrew T. T. Mcrae,
Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J.
Kelly. Firedrake: Automating the finite element method by
composing abstractions. Transactions on Mathematical Soft-
ware, 43(3):24:1–24:27, 2016. doi:10.1145/2998441.

[34] Kasia Świrydowicz, Eric Darve, Wesley Jones, Jonathan
Maack, Shaked Regev, Michael A Saunders, Stephen J.
Thomas, and Slaven Peleš. Linear solvers for power grid
optimization problems: A review of GPU-accelerated
linear solvers. Parallel Computing, 111(C), 2022.
doi:10.1016/j.parco.2021.102870.

[35] Neil Toronto and Jay McCarthy. Practically Accurate Floating-
Point Math. Computing in Science & Engineering, 16(4):80–
95, 2014. doi:10.1109/MCSE.2014.90.

8

http://dx.doi.org/10.1145/3588195.3592991
http://dx.doi.org/10.1145/3324989.3325721
http://dx.doi.org/10.48550/arXiv.2209.05433
http://dx.doi.org/10.1145/3586183.3606819
http://dx.doi.org/10.1007/978-3-319-76526-6
https://github.com/P3109/Public/blob/main/Shared%20Reports/P3109%20WG%20Interim%20Report.pdf
https://github.com/P3109/Public/blob/main/Shared%20Reports/P3109%20WG%20Interim%20Report.pdf
https://github.com/P3109/Public/blob/main/Shared%20Reports/P3109%20WG%20Interim%20Report.pdf
http://dx.doi.org/10.1145/2737924.2737959
https://j3-fortran.org/doc/year/97/97-172.pdf
https://j3-fortran.org/doc/year/97/97-172.pdf
http://dx.doi.org/10.21105/joss.02018
http://dx.doi.org/10.1145/2998441
http://dx.doi.org/10.1016/j.parco.2021.102870
http://dx.doi.org/10.1109/MCSE.2014.90

	Introduction
	Floating-Point Exception Primer
	Exceptions and Exceptional Values
	Lifetime of an Unhandled Exceptions

	FlowFPX
	TrackedFloats.jl
	Tracking Exceptional Values
	Fuzzing
	Internals

	Stack Graphs
	GPU-FPX

	Case Studies
	ShallowWaters.jl
	Stack Graphs for a Bigger Picture
	Stack Graph Differences

	Fuzzing from NBody to ODE
	Finch
	Oceananigans.jl
	RxInfer.jl

	Related Work
	Error Analysis
	Diagnosing floating-point exceptions
	Stack Graphs
	GPU Exception Tracking

	Discussion
	Performance
	Enhanced Fuzzing
	Tracking Exceptions in External Libraries
	Interface Concerns, Multi-Threading

	Acknowledgments
	References

