
Pigeons.jl: Distributed sampling from intractable
distributions

Nikola Surjanovic1, Miguel Biron-Lattes1, Paul Tiede2, Saifuddin Syed3, Trevor Campbell1, and
Alexandre Bouchard-Côté1

1University of British Columbia
2Harvard University

3University of Oxford

ABSTRACT
We introduce a software package, Pigeons.jl, that provides a way
to leverage distributed computation to obtain samples from compli-
cated probability distributions, such as multimodal posteriors aris-
ing in Bayesian inference and high-dimensional distributions in sta-
tistical mechanics. Pigeons.jl provides a simple user interface to
perform such computations single-threaded, multi-threaded, and/or
distributed over thousands of MPI-communicating machines. In ad-
dition, Pigeons.jl guarantees a property that we call strong paral-
lelism invariance: the output for a given seed is identical irrespec-
tive of the number of threads and processes, which is crucial for sci-
entific reproducibility and software validation. We describe the key
features of Pigeons.jl and the approach taken to implement a dis-
tributed and randomized algorithm that satisfies strong parallelism
invariance.

Keywords
distributed computation, Bayesian inference, parallelism invari-
ance, multi-threading, Message Passing Interface, Markov chain
Monte Carlo

1. Introduction
In many scientific application domains, the ability to obtain sam-
ples from a probability distribution is of central interest. For in-
stance, sampling methods have been used to discover magnetic po-
larization in the black hole of galaxy M87 [2] and to image the
Sagittarius A* black hole [1]. They have also been used to model
the evolution of single-cell cancer genomes [23], infer plasma dy-
namics inside nuclear fusion reactors [14], and to identify gerry-
mandering in Georgia’s 2021 congressional districting plan [34].
Similarly, evaluating high-dimensional integrals or sums over com-
plicated combinatorial spaces are related tasks that can also be
solved with sampling via Markov chain Monte Carlo (MCMC)
methods. However, such calculations can often be bottlenecks in
the scientific process, with simulations that can last days or even
weeks to finish.

Pigeons.jl1 enables users to sample efficiently from challenging
probability distributions and solve integration problems by imple-

1The source code for Pigeons.jl can be found at https://github.com/
Julia-Tempering/Pigeons.jl. Pigeons.jl v0.2.0, used in the example
scripts below, is compatible with Julia 1.8+.

menting state-of-the-art sampling algorithms [29, 27] that leverage
distributed computation. Its simple user interface facilitates per-
forming such computations single-threaded, multi-threaded, and/or
distributed over MPI-communicating machines. We have stress-
tested Pigeons successfully with up to 1000 machines running
concurrently on a compute cluster (Sockeye) at the University
of British Columbia. Further, Pigeons comes with guarantees on
strong parallelism invariance wherein the output for a given seed is
identical irrespective of the number of threads or processes. Such
a level of reproducibility is rare in distributed software but of great
use for the purposes of debugging in the context of sampling algo-
rithms, which produce stochastic output. Specifically, Pigeons.jl is
designed to be suitable and yield reproducible output for:

(1) one machine running on one thread;
(2) one machine running on several threads;
(3) several machines running, each using one thread, and
(4) several machines running, each using several threads.

1.1 Latest documentation
More in-depth documentation and additional examples can be
found at: https://pigeons.run/.

1.2 Problem formulation
We describe the class of problems that can be approached using Pi-
geons.jl. Let π(x) denote a probability density2 called the target. In
many problems, e.g. in Bayesian statistics, the density π is typically
known only up to a normalizing constant,

π(x) =
γ(x)

Z
, Z =

∫
γ(x) dx, (1)

where γ can be evaluated pointwise but Z is typically unknown.
Pigeons.jl takes as input the function γ.

The output of Pigeons.jl can be used for two main tasks:

(1) Approximating integrals of the form
∫
f(x)π(x) dx. For ex-

ample, the choice f(x) = x computes the mean and f(x) =
I[x ∈ A] computes the probability of A under π, where I[·]
denotes the indicator function.

2This density may also be a probability mass function (discrete variables).
We also allow for a combination of discrete/continuous variables.

1

https://github.com/Julia-Tempering/Pigeons.jl
https://github.com/Julia-Tempering/Pigeons.jl
https://pigeons.run/

The Proceedings of the JuliaCon Conferences 7(69), 2025

(2) Approximating the value of the normalization constant Z.
For example, in Bayesian statistics, this corresponds to the
marginal likelihood, which can be used for model selection.

The Pigeons package particularly shines compared to traditional
sampling approaches in the following scenarios:

—When the target density π is challenging due to a complex struc-
ture (e.g., high-dimensional, multi-modal, etc.).

—When the user needs not only
∫
f(x)π(x) dx but also the nor-

malizing constant Z. Many existing tools focus on the former
and struggle or fail to do the latter.

—When the target distribution π is defined over a non-standard
space, e.g. a combinatorial object such as a phylogenetic tree.

1.3 What is of interest to the general Julia developer?
Ensuring code correctness at the intersection of randomized, paral-
lel, and distributed algorithms is a challenge. To address this chal-
lenge, we designed Pigeons.jl based on a principle that we refer
to as strong parallelism invariance (SPI). Namely, the output of
Pigeons.jl is invariant to the number of machines and/or threads.
Without explicitly keeping SPI in mind during software construc-
tion, the (random) output of the algorithm is only guaranteed to
have the same distribution. This is a much weaker guarantee that, in
particular, makes debugging difficult. However, with our notion of
SPI we make debugging and software validation considerably eas-
ier. This is because the developer can first focus on the fully serial
randomized algorithm, and then use it as an easy-to-compare gold-
standard reference for parallel/distributed implementations. This
strategy is used extensively in Pigeons.jl to ensure correctness. In
contrast, testing equality in distribution, while possible (e.g., see
[13]), incurs additional false negatives due to statistical error.

The general Julia developer will be interested in:

—The main causes of a violation of strong parallelism invariance
that we have identified (Section 4)—some of which are specific
to Julia—and how we address them in Pigeons.jl.

—The SplittableRandoms.jl3 package that was developed by our
team to achieve strong parallelism invariance in Pigeons.jl (Sec-
tion 4.2).

2. Examples
In this section we present a set of minimal examples that demon-
strate how to use Pigeons.jl for sampling. We also direct readers to
our growing list of examples at InferHub (https://julia-tempering.
github.io/InferHub/), which hosts a collection of posterior distribu-
tions with an emphasis on difficult (non-log-concave) problems.

We begin by installing the latest official release of Pigeons.jl:� �
using Pkg ; Pkg . add (" Pigeons ")� �
2.1 Targets
To use Pigeons.jl, we must specify a target distribution, given by
γ in Eq. (1). Numerous possible types of target distributions are
supported, including custom probability densities (specified up to

3https://github.com/Julia-Tempering/SplittableRandoms.jl

a normalizing constant) written in Julia. We also allow to inter-
face with models written in common probabilistic programming
languages, including:

—Turing.jl [12] models (TuringLogPotential)
—Stan [10] models (StanLogPotential)
—Comrade.jl4 models for black hole imaging

(ComradeLogPotential)
—Non-Julian models with foreign-language Markov chain Monte

Carlo (MCMC) code (e.g. Blang [5] code for phylogenetic infer-
ence over combinatorial spaces)

Additional targets are currently being accommodated and will be
introduced to Pigeons.jl in the near future.

In what follows, we demonstrate how to use Pigeons with a Julia
Turing model applied to a non-identifiable “coinflip” data set. The
Bayesian model can be formulated as

p1, p2
i.i.d.∼ U(0, 1), (2)

y | p1, p2 ∼ Binomial(n, p1p2).

The random variable y is the number of heads observed on n coin
flips where the probability of heads is p1p2. This model is non-
identifiable, meaning that it is not possible to distinguish the effects
of the two different parameters p1 and p2. As a consequence, the
target distribution exhibits a complicated structure, as displayed in
Fig. 1. The density of interest corresponding to this model is

π(p1, p2) = γ(p1, p2)/Z,

where

γ(p1, p2) =

(
n

y

)
(p1p2)

y(1− p1p2)
n−yI[p1, p2 ∈ [0, 1]] (3)

Z =

∫ 1

0

∫ 1

0

γ(p1, p2) dp1 dp2. (4)

The distribution π is also known as the posterior distribution in
Bayesian statistics.

Suppose that we perform n = 100, 000 coin tosses and observe
y = 50, 000 heads. We would like to obtain samples from our pos-
terior, π, having collected this data. We begin by installing Turing� �
Pkg . add (" Turing ")� �
and then defining our Turing model and storing it in the variable
model:� �
using Turing
@model function coinflip (n, y)

p1 ~ Uniform (0 .0 , 1 .0)
p2 ~ Uniform (0 .0 , 1 .0)
y ~ Binomial (n, p1 * p2)
return y

end
model = coinflip (100000 , 50000)� �
From here, it is straightforward to sample from the density given by
Eq. (3) up to a normalizing constant. We use non-reversible parallel

4https://github.com/ptiede/Comrade.jl

2

https://julia-tempering.github.io/InferHub/
https://julia-tempering.github.io/InferHub/
https://github.com/Julia-Tempering/SplittableRandoms.jl
https://github.com/ptiede/Comrade.jl

The Proceedings of the JuliaCon Conferences 7(69), 2025

0.71 − 0.15
+ 0.18

p1
0.6 0.8 1.0

p2

0.6

0.8

1.0

p2
0.5 0.6 0.7 0.8 0.9

0.70 − 0.15
+ 0.19

Fig. 1: Posterior distribution for the model given by Eq. (2) with n =

100, 000 coin flips and y = 50, 000 observed heads, estimated using 217

samples from Pigeons.jl. We present the pairwise plot for p1 and p2, as
well as the estimated densities of the marginal of the posterior for each of
the two parameters. Note that because the model is non-identifiable, as we
collect more data the posterior distribution concentrates around the curve
p1p2 = 0.5, instead of a single point, assuming that the true probability of
observing heads is 0.5.

tempering [29, 30, 27, 28] (PT), Pigeons.jl’s state-of-the-art sam-
pling algorithm, to sample from the target distribution. PT comes
with several tuning parameters and [29] describe how to select
these parameters effectively, which Pigeons.jl implements under
the hood. We also specify that we would like to store the obtained
samples in memory to be able to produce trace-plots, as well as
some basic online summary statistics of the target distribution and
useful diagnostic output by specifying record = [traces,
online, round_trip, Pigeons.timing_extrema,
Pigeons.allocation_extrema]. It is also possible to leave the
record argument empty and reasonable defaults will be selected
for the user. The code below runs Pigeons.jl on one machine with
one thread. We use the default values for most settings, however
we explain later how one can obtain improved performance by
setting arguments more carefully (see Section 2.4).� �
using Pigeons
pt = pigeons (

target = TuringLogPotential (model),
record = [

traces , online , round_trip ,
Pigeons . timing_extrema ,
Pigeons . allocation_extrema])� �

Note that to convert the Turing model into an appropriate Pi-
geons.jl target for sampling, we pass the model as an argument to
TuringLogPotential(). Once we have stored the PT output in
the variable pt we can access the results, as described in the fol-

lowing section. The standard output after running the above code
chunk is displayed in Fig. 2 and explained in the next section.
For purposes of comparison, we also run a traditional (single-chain
Markov chain Monte Carlo) method.

2.1.1 Other targets. As mentioned previously, it is also possi-
ble to specify targets with custom probability densities, as well
as Stan and Turing models. Additionally, suppose we have some
code implementing vanilla MCMC, written in an arbitrary “for-
eign” language such as C++, Python, R, Java, etc. Surprisingly,
it is very simple to bridge such code with Pigeons.jl. See https:
//pigeons.run/stable/input-overview/.

2.2 Outputs
Pigeons.jl provides many useful types of output, such as: plots of
samples from the distribution, estimates of normalization constants,
summary statistics of the target distribution, and various other di-
agnostics. We describe several examples of possible output below.

2.2.1 Standard output. An example of the standard output pro-
vided by Pigeons.jl is displayed in Fig. 2. Each row of the table in
the output indicates a new tuning round in parallel tempering, with
the #scans column indicating the number of scans/samples in that
tuning round. During these tuning rounds, Pigeons.jl searches for
optimal values of certain PT tuning parameters. Other outputs in-
clude:

—restarts: a higher number is better. Informally, PT propagates
samples from an easy-to-sample distribution (the reference) to
the more difficult target distribution. A tempered restart hap-
pens when a sample from the reference successfully percolates
to the target. (See the subsequent sections for a more detailed
description of parallel tempering.) When the reference supports
i.i.d. sampling, tempered restarts can enable large jumps in the
state space.

—Λ: the global communication barrier, as described in [29], which
measures the inherent difficulty of the sampling problem. A rule
of thumb to configure the number of PT chains is also given
by [29], where they suggest that stable performance should be
achieved when the number of chains is set to roughly 2Λ. See
Section 2.2.6 for more information.

—time and allc: the time (in seconds) and number of allocations
(in bytes) used in each round.

—log(Z1/Z0): an estimate of the logarithm of the ratio of normal-
ization constants between the target and the reference. In many
cases, Z0 = 1.

—min(α) and mean(α): minimum and average swap acceptance
rates during the communication phase across the PT chains. See
Section 3 for a description of PT communication.

2.2.2 Plots. It is straightforward to obtain plots of samples from
the target distribution, such as trace-plots, pairwise plots, and den-
sity plots of the marginals.

To obtain posterior densities and trace-plots, we first make sure that
we have the third-party MCMCChains.jl5, StatsPlots.jl6, and Plot-
lyJS.jl7 packages installed via� �
Pkg . add (" MCMCChains ", " StatsPlots ", " PlotlyJS ")� �
5https://github.com/TuringLang/MCMCChains.jl
6https://github.com/JuliaPlots/StatsPlots.jl
7https://github.com/JuliaPlots/PlotlyJS.jl

3

https://pigeons.run/stable/input-overview/
https://pigeons.run/stable/input-overview/
https://github.com/TuringLang/MCMCChains.jl
https://github.com/JuliaPlots/StatsPlots.jl
https://github.com/JuliaPlots/PlotlyJS.jl

The Proceedings of the JuliaCon Conferences 7(69), 2025

� �
scans restarts Λ time (s) allc (B) log (Z1 /Z0) min (α) mean (α)

2 0 1 .0 4 0 .3 83 3 .4 8 e+0 7 -4 .2 4 e+0 3 0 0 .8 85
4 0 4 .0 6 0 .0 0287 1 .7 9 e+0 6 - 16 .3 4 .6 3 e-0 6 0 .5 49
8 0 3 .4 9 0 .0 0622 3 .5 5 e+0 6 - 12 .1 0 .2 15 0 .6 12

16 0 2 .6 8 0 .0 161 7 .4 6 e+0 6 - 10 .2 0 .5 18 0 .7 03
32 0 4 .2 9 0 .0 353 1 .3 7 e+0 7 - 11 .8 0 .2 22 0 .5 24
64 3 3 .1 7 0 .0 699 2 .8 6 e+0 7 - 11 .5 0 .5 29 0 .6 48

128 8 3 .5 6 0 .1 39 5 .5 3 e+0 7 - 11 .5 0 .5 23 0 .6 05
256 12 3 .3 8 0 .2 41 1 .1 e+0 8 - 11 .6 0 .5 26 0 .6 25
512 37 3 .4 8 0 .4 73 2 .2 2 e+0 8 - 12 0 .5 27 0 .6 14

1 .0 2 e+0 3 77 3 .5 5 0 .8 95 4 .4 6 e+0 8 - 11 .8 0 .5 71 0 .6 05� �
Fig. 2: Standard output provided by Pigeons.jl. Rows indicate tuning rounds of the PT algorithm with an exponentially increasing number of
PT iterations (#scans). Columns indicate various useful diagnostics, such as the amount of memory allocations per round (in bytes), time
(in seconds), and estimates of the log of the normalization constants. The output is described in greater detail in Section 2.2.6 and has been
modified to exclude columns that are not described in the paper.

With the pt output object from before for our non-identifiable coin-
flip model, we can run the following:� �
using MCMCChains , StatsPlots , PlotlyJS
plotlyjs ()
samples = Chains (

sample_array (pt), variable_names (pt))
my_plot = StatsPlots . plot (samples)
display (my_plot)� �
The output of the above code chunk is an interactive plot that can be
zoomed in or out and exported as an HTML webpage. A modified
static version of the output for the first parameter, p1, is displayed in
the top panel of Fig. 3, along with a comparison to the output from
a single-chain algorithm in the bottom panel of the same figure.

To obtain pair plots, we add the PairPlots.jl8 and CairoMakie.jl9

packages:� �
Pkg . add (" PairPlots ", " CairoMakie ")� �
and then run� �
using PairPlots , CairoMakie
my_plot = PairPlots . pairplot (samples)
display (my_plot)� �
The output of the above code chunk with an increased number of
samples is displayed in Fig. 1. 10

2.2.3 Estimate of normalization constant. The (typically un-
known) constant Z in Eq. (1) is referred to as the normalization
constant. In many applications, it is useful to approximate this con-
stant. For example, in Bayesian statistics, this corresponds to the
marginal likelihood and can be used for model selection.

As a side-product of PT, we automatically obtain an approximation
to the natural logarithm of the normalization constant. This is done

8https://github.com/sefffal/PairPlots.jl
9https://github.com/JuliaPlots/CairoMakie.jl
10The code chunk above requires Julia 1.9.

automatically using the stepping stone estimator [33]. The estimate
can be accessed using� �
stepping_stone (pt)� �
In the case of the normalization constant given by Eq. (4) for
n = 100, 000 and y = 50, 000, we can exactly obtain its value
as log(Z) ≈ −11.8794. Note that this is very close to the output
provided in Fig. 2.

2.2.4 Online statistics. Pigeons has facilities to support cases re-
quiring large memory. For instance, we allow for the computation
of online statistics, as well as off-memory sample storage. Having
specified the use of the online recorder in our call to pigeons(),
we can output some basic summary statistics of the marginals of
our target distribution. For instance, it is straightforward to esti-
mate the mean and variance of each of the marginals of the target
with� �
using Statistics
mean (pt); var (pt)� �
Other constant-memory statistic accumulators are made avail-
able in the OnlineStats.jl [11] package. To add additional
constant-memory statistic accumulators, we can register them via
Pigeons.register_online_type(), as described in our on-
line documentation. For instance, we can also compute constant-
memory estimates of extrema of our distribution.

2.2.5 Off-memory processing. When either the dimensionality of
the model or the number of samples is large, the obtained samples
may not fit in memory. In some cases it may be necessary to store
samples to disk if our statistics of interest cannot be calculated on-
line and with constant-memory (see Section 2.2.4). We show here
how to save samples to disk when Pigeons.jl is run on a single ma-
chine. A similar interface can be used over MPI.

First, we make sure that we set checkpoint = true, which
saves a snapshot at the end of each round in the direc-
tory results/all/<unique directory> and is symlinked to
results/latest. Second, we make sure that we use the disk
recorder by setting record = [disk], along with possibly any
other desired recorders. Accessing the samples from disk can

4

https://github.com/sefffal/PairPlots.jl
https://github.com/JuliaPlots/CairoMakie.jl

The Proceedings of the JuliaCon Conferences 7(69), 2025

Fig. 3: Trace-plots for the first parameter, p1, in the non-identifiable coinflip Turing model. Left: Samples from Pigeons.jl using PT with
10 chains. Note that the trace-plot indicates fast mixing/exploration across the state space. Right: Single-chain Markov chain Monte Carlo.
Note that the trace-plot explores the state space much more slowly when we do not use PT.

then be achieved in a simple way using the Pigeons.jl function
process_sample().

2.2.6 PT diagnostics. We describe how to produce some key par-
allel tempering diagnostics from [29].

The global communication barrier, denoted Λ in Pigeons.jl out-
put, can be used to approximately inform the appropriate num-
ber of chains. Based on [29], stable PT performance should be
achieved when the number of chains is set to roughly 2Λ. This
can be achieved by modifying the n_chains argument in the call
to pigeons(). The global communication barrier is shown at each
round and can also be accessed with� �
Pigeons . global_barrier (pt)� �
The number of restarts per round can be accessed with� �
n_tempered_restarts (pt)� �
These quantities are also displayed in Fig. 2. Many other useful PT
diagnostic statistics and plots can be obtained, as described in our
full documentation.

2.3 Parallel and distributed PT
One of the main benefits of Pigeons.jl is that it allows users to easily
parallelize and/or distribute their PT sampling efforts. We explain
how to run MPI locally on one machine and also how to use MPI
when a cluster is available.

2.3.1 Running MPI locally. To run MPI locally on one machine
using four MPI processes and one thread per process, use� �
pigeons (

target = TuringLogPotential (model),
on = ChildProcess (

n_local_mpi_processes = 4,
n_threads = 1))� �

2.3.2 Running MPI on a cluster. Often, MPI is available via a
cluster scheduling system. To run MPI over several machines:

(1) In the cluster login node, follow the Pigeons.jl installation in-
structions in our online documentation.

(2) Start Julia in the login node, and perform a one-time setup by
calling Pigeons.setup_mpi().

(3) In the Julia REPL running in the login node, run:11

� �
pigeons (

target = TuringLogPotential (model),
n_chains = 1 _000 ,
on = MPI (n_mpi_processes = 1 _000 ,

n_threads = 1))� �
The code above will start a distributed PT algorithm with 1,000
chains on 1,000 MPI processes each using one thread. Note that for
the above code chunks involving ChildProcess() and MPI() to
work, it may be necessary to specify dependencies in their function
calls. See https://pigeons.run/stable/mpi/ for details.

2.4 Additional options
In the preceding example we only specified the target distribu-
tion and let Pigeons.jl decide on default values for most other
settings of the inference engine. There are various settings we
can change, including: the random seed (seed), the number of
PT chains (n_chains), the number of PT tuning rounds/sam-
ples (n_rounds), and a variational reference distribution family
(variational), among other settings. For instance, we can run� �
pigeons (

target = TuringLogPotential (model),
n_rounds = 10 ,
n_chains = 10 ,
variational = GaussianReference (),
seed = 2

)� �
11In version 0.4.0 of Pigeons, the function MPI has been renamed
MPIProcesses to avoid a clash with the library MPI.jl.

5

https://pigeons.run/stable/mpi/

The Proceedings of the JuliaCon Conferences 7(69), 2025

Fig. 4: A simple bimodal distribution from which traditional MCMC meth-
ods may struggle to obtain samples. Blue lines display output from 1,000
iterations of a Metropolis-Hastings random walk MCMC algorithm. The
sampler in this figure is visibly trapped in one of the two modes.

which runs PT with the same Turing model target as before and
explicitly states that we should use 10 PT tuning rounds with 10
chains (described below). In the above code chunk we also specify
that we would like to use a Gaussian variational reference distri-
bution. That is, the reference distribution is chosen from a multi-
variate Gaussian family that lies as close as possible to the target
distribution in order to improve the efficiency of PT. We refer read-
ers to [27] for more details. When only continuous parameters are
of interest, we encourage users to consider using variational =
GaussianReference() and setting n_chains_variational =
10, for example, as the number of restarts may substantially in-
crease with these settings.

3. Parallel tempering
Pigeons.jl provides an implementation of distributed parallel tem-
pering (PT) described in [29], which we outline in Algorithm 1.
This section gives both a brief overview of PT and some details of
its distributed implementation.

In this section we assume a basic understanding of Markov
chain Monte Carlo (MCMC) methods. For readers unfamiliar with
MCMC, it is important to know that it is a method to obtain ap-
proximate samples from a distribution. However, with traditional
MCMC methods, the samples may be heavily correlated instead of
independent and may fail to sufficiently explore the full space of
the distribution (see Fig. 4); PT is a method that aims to address
these issues. For a more in-depth review of PT, we refer readers to
[27].

3.1 Overview of PT
Suppose that we would like to estimate integrals involving π, such
as

∫
f(x)π(x) dx. These integrals may be multivariate and even

include combinations of continuous and discrete variables (where
sums replace integrals in the discrete case). One method is to obtain
samples from π to approximate such integrals. Often, the distribu-
tion π can be challenging for traditional MCMC methods—such
as Metropolis-Hastings, slice sampling, and Hamiltonian Monte
Carlo— because of its structure. For example, in a bimodal ex-
ample such as the one illustrated in Figure 4, traditional methods
might remain in one of the two modes for an extremely long period
of time.

π1 π2 π3

π4 π5 π6

Fig. 5: Heatmaps of six distributions lying on an annealing path from a uni-
modal reference distribution π1, from which it is straightforward to obtain
samples, and ending at πN , which is in this case the bimodal distribution
from Figure 4. (Note that in this case the colours between the heatmaps are
not directly comparable because the densities of intermediate distributions
are not normalized.)

To resolve this issue, PT constructs a sequence of N distributions,
π1, π2, . . . , πN , where πN is usually equal to π. The distributions
are chosen so that it is easy to obtain samples from π1 with the
sampling difficulty increasing as one approches πN . An example of
such a sequence of distributions, referred to as an annealing path,
is shown in Figure 5.

We now turn to explain how this path of distributions can be used
to enhance sampling from the target distribution, π. PT operates by
first obtaining samples from each distribution on the path in par-
allel (referred to as an exploration phase). Then, samples between
adjacent distributions are swapped (referred to as a communication
phase). The communication phase in PT is crucial: it allows for the
discovery of new regions of the space of the target distribution such
as the top-right mode of the distribution presented in Figure 4.

3.2 Local exploration and communication
A central data structure in Pigeons is the Replica, a Julia struct
that we will often refer to in the remainder of this section. A single
Replica stores a state variable and a chain integer, among other
entries. At the beginning of PT, N Replicas are created, one for
each distribution on the annealing path, and the chain entries in the
N replicas are initialized at 1, 2, . . . ,N , respectively. For a given
Replica, if the chain number is i and the state is x, then this
means that the sample corresponding to the i-th distribution in the
sequence π1, . . . , πN is currently at location x.

In the local exploration phase, each Replica’s state is mod-
ified using an MCMC move targeting πi, where i is given
by Replica.chain. The MCMC move can either modify
Replica.state in-place, or modify the Replica’s state field.
This operation is indicated by the local_exploration function
in Algorithm 1.

In the communication phase, PT proposes swaps between pairs of
replicas. In principle, there are two equivalent ways to do a swap. In
the first implementation, the Replicas could exchange their state
fields. Alternatively, they could exchange their chain fields. Be-
cause we provide distributed implementations, we use the latter as

6

The Proceedings of the JuliaCon Conferences 7(69), 2025

it ensures that the amount of data that needs to be exchanged be-
tween two machines during a swap can be made very small (two
floating point numbers), resuling in an exchange of O(N) mes-
sages of size O(1). Note that this cost does not vary with the di-
mensionality of the state space, in contrast to the first implementa-
tion that would transmit O(N) messages of size O(d), where d is
the dimension of the state space, incurring a potentially very high
communication cost for large values of d.

3.3 Distributed implementation
A distributed implementation of PT is shown in Algorithm 1 and
we describe the details of the implementation below. For pedagogy,
we first present the algorithm in the special case where the number
of machines available is equal to the number of Replicas and dis-
tributions, N . However, Pigeons also allows for the more general
case where the number of machines is not necessarily equal to N .
We outline how Pigeons achieves this in Section 3.3.3.

3.3.1 Distributed mapping from chains to machines. Recall that
our theoretical O(1) message size for communication between
two machines is achieved by exchanging chain indices between
Replicas instead of their states. However, in order to achieve
this low cost, a specialized distributed data structure is needed to
maintain a mapping from chain indices to machine identifiers. To
motivate it, we start with an illustrative example. Suppose we have
N = 4 distributions, chains, replicas, and machines, and that ma-
chine 1 is exploring chain 2 while machine 4 is exploring chain 3.
At one point, the Replica at chain 2 (machine 1) might need to
exchange chain indices with the Replica that has chain index 3
(machine 4). However, a priori it is not clear how machine 1 should
know that it should communicate with machine 4 because it has no
knowledge about the chain indices on the other machines.

To resolve this issue, we introduce a special data structure called
a PermutedDistributedArray. In the case where the number
of replicas is equal to the number of available machines, the
construction is quite simple and effectively results in each ma-
chine storing one additional integer. Considering the same ex-
ample above, the solution to the problem is to have machine
1 (chain 2 wanting to communicate with chain 3) communi-
cate with machine 3. Machine 3 stores in its dist_array vari-
able of type PermutedDistributedArray the value 4, which
is the machine number that stores chain 3. By updating these
PermutedDistributedArray variables at each communication
step, we can ensure that each machine j is aware of which ma-
chine number currently stores chain j. Therefore, the machines
act as keys in a dictionary for the communication permutations. An
illustration of communication between four machines is provided
in Fig. 6. We note that with a PermutedDistributedArray we
make special assumptions on how we access and write to the ar-
ray elements. Several MPI processes cooperate, with each machine
storing data for a slice of this distributed array, and at each time
step an index of the array is manipulated by exactly one machine.
Thanks to this, we do not need to resort to global MPI synchroniza-
tion steps.

3.3.2 MPI implementation details. We use the MPI.jl [8] pack-
age to support communication between machines. In Algorithm 1,
the function swap_stat() extracts the sufficient statistic required
by each partner of a swap. The swap sufficient statistic contains
two elements: (1) a uniformly distributed random number, and (2)
the log of the ratio πc(xt)/πc′(xt), up to a normalization con-
stant which may depend on c and c′ but not xt. The function

Algorithm 1 Distributed PT on machine j (one replica per ma-
chine)
Require: Initial state x0, sequence of distributions {πi}Ni=1, num-

ber of iterations T , machine number j
1: chain← j ▷ current chain number
2: dist_array[j]← j ▷ chain j is on machine j
3: for t in 1, 2, . . . , T do
4: xt ← local_exploration(πchain, xt−1)
5: ct ← chain
6: if is_even(t) = is_even(chain) then
7: direction← +1
8: else
9: direction← −1

10: end if
11: partner← chain+ direction
12: if partner = 0 then
13: partner← 1 ▷ Encode boundaries as self-interaction
14: else if partner = N + 1 then
15: partner← N
16: end if
17: my_stat← swap_stat(xt,chain, partner)
18: to_machine← permuted_get(dist_array, partner)
19: partner_stat← transmit(my_stat, to_machine)
20: if swap_accepted(my_stat, partner_stat) then
21: chain← partner_chain
22: end if
23: permuted_set!(dist_array, chain, j)
24: end for
25: return {(xt, ct)}Tt=1

transmit() is used to exchange these statistics between the two
partners of a proposed swap. In order to make an accept-reject de-
cision, the two machines use the same uniform sample (using an
arbitrary, fixed convention, namely the shared sufficient statistic’s
uniform from the lowest interacting chain index) to make a com-
mon swap decision (where the acceptance ratio is the sum of the
two exchanged log ratios, (2)).

In Algorithm 1 we also introduce the functions
permuted_get() and permuted_set!(), which operate on
a PermutedDistributedArray as described in Section 3.3.1.
Given the current machine’s dist_array and the partner chain
with which it should communicate, permuted_get() returns the
machine number that holds the partner chain. Given the current
machine’s dist_array, chain number, and machine number j,
permuted_set!() updates the PermutedDistributedArray
variables with the updated permutation.

3.3.3 Load balancing. So far we have assumed, for pedagogy,
that the number of machines M is equal to the number of chains
N . This restriction is not present in Pigeons, so we now describe
how the code base generalizes Algorithm 1. First, the N replicas
are shared between the M machines so that each machine con-
tains either ⌈N/M⌉ or ⌊N/M⌋ replicas. Each machine’s replicas
are called the local replicas. The allocation of replicas to machine
is fixed over the whole execution of the algorithm and maintained
using the LoadBalance struct. Second, the code performing local
exploration is enclosed in a loop over the local replicas, and if the
option “multithreaded = true” is used in the pigeons(...)
call, the exploration loop is performed in a @threads for loop.
Finally, the functions used in the communication, permuted_get,
permuted_set!, transmit, etc., are vectorized to accommodate

7

The Proceedings of the JuliaCon Conferences 7(69), 2025

1(1)

2(2)4(4)

3(3)

1(2)

2(1)4(3)

3(4)

1(3)

2(1)4(2)

3(4)

1(4)

2(2)4(1)

3(3)

Fig. 6: A summary of communication between four machines with N = 4 PT chains. Circles represent machines with the machine number
in the center of the circle. Different colours are also used for different machines. Numbers in parentheses represent the chain that is currently
being explored by that machine. Arrows indicate communication occuring between machines to exchange chain indices. To keep track of
which chains are stored on which machine, we introduce the dist_array of type PermutedDistributedArray, described in Section 3.3.1,
which is of length N . The j-th element of dist_array at a given time step indicates which machine number is storing chain index j. The
bolded curve in the figures to the right indicate the trajectory of the first Replica over the course of each of the communication steps. Top
left: the PT replicas are initialized and the first communication step is proposed. At this time step, dist_array = [1, 2, 3, 4]. Top right:
after the first successful communication step, we now have dist_array = [2, 1, 4, 3]. Bottom left: The second communication step is
completed and dist_array = [2, 4, 1, 3]. Bottom right: The third communication step is completed and dist_array = [4, 2, 3, 1].

that chain and partner are no longer integers but rather sets of
integers. In particular, the permuted distributed array is designed so
that each machine is responsible for tracking machine allocations
for ⌈N/M⌉ or ⌊N/M⌋ chains instead of a single one.

3.4 Weak scaling of PT
We study the weak scaling properties of Pigeons’ implementation
of PT. In this setup, we consider a varying problem size propor-
tional to the number of processes used. The number of chains is
our definition of the problem size; this is in line with previous
heuristics that establish that the problem difficulty is generally pro-
portional to the optimal number of chains in PT [29]. In particu-
lar, we consider a multivariate normal target distribution and vary
the dimension d ∈ {21, 22, . . . , 212} for the distributed setup and
d ∈ {21, 22, . . . , 210} for the parallel (shared memory) setup. The
number of chains is set to ⌈

√
d ⌉ according to PT tuning suggestions

[29] and for the distributed and parallel settings we set the num-
ber of processes or threads equal to the number of chains. Within
each chain we use the autoMALA sampler [4], which is a gradient-
based sampler with automatic step size selection in the Metropolis-
adjusted Langevin algorithm. Ten different seeds are used in order
to obtain approximate 95% confidence intervals of the speedup.

The weak scaling results for both the distributed memory paral-
lelism (DMP) and shared memory parallelism (SMP) settings are
presented in Fig. 7. We see that we obtain an approximately linear
speedup as we increase the number of processes.

3.5 Relevance of DMP versus SMP
We emphasize again that Pigeons supports both shared memory
parallelism (SMP) and distributed memory parallelism (DMP).
However, in certain cases, it might be useful to run parallel tem-

pering with many chains or to run several instances of parallel tem-
pering at once. In such cases, the DMP setup is the most natural if
the requested number of chains is very large. Another notable ex-
ample of the benefit of DMP is for the multi-GPU use case. For in-
stance, in some situations the likelihood evaluation of a single chain
may require its own GPU (e.g., if one is running a Fast Fourier
Transform on a GPU). Additionally, DMP can be useful when the
user’s code is not thread safe. In such cases, concurrency can still be
achieved via DMP. Our implementation in Pigeons ensures that the
communication cost in the DMP setup is minimal. In most cases,
the communication cost is negligible compared to other computa-
tions performed on each process.

4. Strong parallelism invariance
In this section we describe potential violations of strong parallelism
invariance (SPI) that can occur in a distributed setting. We also ex-
plain how we avoid these issues by using special distributed re-
duction schemes and splittable random number generators. Insights
provided in this section can be applied to general distributed soft-
ware beyond Julia.

We have identified two factors that can cause violations of our
previously-defined SPI that standard Julia libraries do not automat-
ically take care of:

(1) Non-associativity of floating point operations: When several
workers perform distributed reduction of floating point values,
the output of this reduction will be slightly different depending
on the order taken during reduction. When these reductions are
then fed into further random operations, this implies that two
randomized algorithms with the same seed but using a different
number of workers will eventually arbitrarily diverge.

8

The Proceedings of the JuliaCon Conferences 7(69), 2025

0

10

20

30

0 20 40 60
Number of chains

S
pe

ed
up

 (
w

al
lc

lo
ck

 s
in

gl
e/

co
nc

ur
re

nt
)

0.0

2.5

5.0

7.5

0 10 20 30
Number of chains

S
pe

ed
up

 (
w

al
lc

lo
ck

 s
in

gl
e/

co
nc

ur
re

nt
)

Fig. 7: Weak scaling results for PT in both the distributed (MPI, left) and parallel (Julia threads, right) settings with approximate 95%
confidence intervals for the speedup relative to single-thread execution. The blue dotted line represents a hypothetical speedup equal to the
number of processes/threads. The red dashed line indicates a speedup of one for reference.

(2) Global, thread-local, and task-local random number gener-
ators: These are the dominant approaches to parallel random
number generators in current languages, and an appropriate un-
derstanding of these RNGs is necessary. In particular, in Julia
it is important to understand the behaviour of the @threads
macro.

Our focus in the remainder of this section is to describe how our
implementation solves the two above issues.

4.1 Distributed reduction and floating point
non-associativity

After each round of PT, the machines need to exchange informa-
tion such as the average swap acceptance probabilities, statistics
to adapt a variational reference and adjust annealing parameters,
and so on. For instance, suppose our state is univariate and real-
valued and that each Replica keeps track of the number of times
the target chain N is visited as well as the mean of the univari-
ate states from the target chain. To obtain the final estimate of
the mean of the target distribution, we would like to pool the mean
estimates from each of the Replicas, weighted by the number of
times that each Replica visited the target chain. This process in-
volves summing floating-point values that are located on each of
the Replicas/machines and is an example of a reduction scheme.

To illustrate why distributed reduction with floating point values
can violate strong parallelism invariance if not properly imple-
mented, we consider the following toy example. Suppose we have
8 machines storing the floating point numbers {1x, 2x, . . . , 8x}, as
illustrated in Fig. 8, where we use x = 10e1 ≈ 27.1828 in the fol-
lowing examples. In this case, if our reduction procedure is to sum
the floating point numbers, we know that our final answer should
be approximately 36x. However, depending on the exact order in
which floating point addition is carried out, the answers might not
all be the same and exactly equal to 36x. For instance, in Fig. 8 we
see that the order of operations for eight machines would be given

by

((1x+ 2x) + (3x+ 4x)) + ((5x+ 6x) + (7x+ 8x))

≈ 978.5814582452562.

In contrast, with two machines, one possible order of operations
might be

(((1x+ 2x) + 3x) + 4x) + (((5x+ 6x) + 7x) + 8x)

≈ 978.5814582452563.

A possible reduction tree for two machines is illustrated in Fig. 9.

To avoid the issue of non-associativity of floating point arithmetic,
we ensure that the order in which operations are performed is ex-
actly the same, irrespective of the number of processes/machines
and threads. This is achieved by making sure that every value to
be added—if addition is our reduction operation—is a leaf node in
a reduction tree that is invariant to the number of machines avail-
able to perform the computation. For instance, if N values are to
be reduced, then the reduction tree would have N leaf nodes. If M
machines are available, these machines are then assigned in such
a way that the order of operations is as if there were N machines
available. To do so, it may be necessary for a machine to “commu-
nicate with itself”, imitating the behaviour that would be present if
there were N machines available. Fig. 10 and Fig. 11 illustrate the
reduction procedure for eight and two machines, respectively.

4.2 Splittable random streams
Another building block towards achieving SPI is a splittable ran-
dom stream [18, 7]. Julia uses task-local random number gener-
ators, a notion that is related to (but does not necessarily imply)
strong parallelism invariance. A task is a unit of work on a ma-
chine. A task-local RNG would then mean that a separate RNG is
used for each unit of work, hopefully implying strong parallelism
invariance if the number of tasks is assumed to be constant. Unfor-
tunately, this is not the case when a separate task is created for each
thread of execution in Julia. We note that the @threads macro in

9

The Proceedings of the JuliaCon Conferences 7(69), 2025

36x

10x

3x

1x 2x

7x

3x 4x

26x

11x

5x 6x

15x

7x 8x

Fig. 8: Adding eight floating point numbers {1x, 2x, . . . , 8x} across eight
machines. Additions in each row of the tree can be performed in parallel.
The final result is stored in the root node of the tree and can be represented
by the expression ((1x+2x) + (3x+4x)) + ((5x+6x) + (7x+8x)),
indicating the order of operations.

36x

10x

6x

3x

1x 2x

3x

4x

26x

8x 18x

7x 11x

6x 5x

Fig. 9: One possible way of adding eight floating point numbers
{1x, 2x, . . . , 8x} across two machines. The final result is stored in the root
node of the tree and can be represented by the expression (((1x + 2x) +
3x) + 4x) + (((5x+ 6x) + 7x) + 8x). Note that the order of operations
in this expression is different from the one presented in Fig. 8.

36x

10x

3x

1x 2x

7x

3x 4x

26x

11x

5x 6x

15x

7x 8x

Fig. 10: Addition of eight floating point numbers across eight machines
with a guarantee on SPI. Each machine is represented by a different colour.
The final result can be represented by the expression ((1x+ 2x) + (3x+
4x)) + ((5x+ 6x) + (7x+ 8x)).

Julia creates nthreads() tasks and thus nthreads() pseudoran-
dom number generators. This can break strong parallelism invari-
ance as the output may depend on the number of threads.

To motivate splittable random streams, consider the following toy
example that violates our notion of SPI:

36x

10x

3x

1x 2x

7x

3x 4x

26x

11x

5x 6x

15x

7x 8x

Fig. 11: Addition of eight floating point numbers across two machines with
a guarantee on SPI. Each machine is represented by a different colour. The
final result can be represented by the expression ((1x+2x)+(3x+4x))+
((5x+6x)+(7x+8x)), which is the same as that given by eight machines
in Fig. 10.� �
using Random
import Base . Threads . @threads

println (" Num . of threads : $(Threads . nthreads ()) ")

const n_iters = 10000
result = zeros (n_iters)
Random . seed !(1)
@threads for i in 1: n_iters

result [i] = rand ()
end
println (" Result : $(last (result)) ")� �
With eight threads, this outputs:� �
Num . of threads : 8
Result : 0 .2 5679999169092793� �
Julia guarantees that if we rerun this code, as long as we are us-
ing eight threads, we will always get the same result, irrespec-
tive of the multi-threading scheduling decisions implied by the
@threads-loop. Internally, Julia works with task-local RNGs and
the @threads macro spawns nthreads() number of task-local
RNGs. For this reason, with a different number of threads, the re-
sult is different:� �
Num . of threads : 1
Result : 0 .8 785201210435906� �
In this simple example above, the difference in output is perhaps
not too concerning, but for our parallel tempering use case, the dis-
tributed version of the algorithm is significantly more complex and
difficult to debug compared to the single-threaded one. We there-
fore take task-local random number generation one step further and
achieve SPI, which guarantees that the output is not only repro-
ducible with respect to repetitions for a fixed number of threads,
but also for different numbers of threads or processes.

A first step to achieve this is to associate one random number gen-
erator to each Replica. To do so, we use our SplittableRandoms.jl
package, which is a Julia implementation of Java SplittableRan-
doms. Our package offers an implementation of SplitMix64 [26],
which allows us to turn one seed into an arbitrary collection of
pseudo-independent RNGs. A quick example of how to use the

10

The Proceedings of the JuliaCon Conferences 7(69), 2025

SplittableRandoms.jl library is given below. By splitting a master
RNG using the split() function, we can achieve SPI even with
the use of the @threads macro.� �
using Random
using SplittableRandoms : SplittableRandom , split
import Base . Threads . @threads

println (" Num . of threads : $(Threads . nthreads ()) ")

const n_iters = 10000
const master_rng = SplittableRandom (1)
result = zeros (n_iters)
rngs = [split (master_rng) for _ in 1: n_iters]
Random . seed !(1)
@threads for i in 1: n_iters

result [i] = rand (rngs [i])
end
println (" Result : $(last (result)) ")� �
With one and eight threads, the code above outputs� �
Num . of threads : 1
Result : 0 .4 394633333251359� �
� �
Num . of threads : 8
Result : 0 .4 394633333251359� �
5. Related work
Automated software packages for Bayesian inference have revolu-
tionized Bayesian data analysis in the past two decades, and are
now a core part of a typical applied statistics workflow. For exam-
ple, packages such as BUGS [20, 21, 22], JAGS [15], Stan [10],
PyMC3 [24], and Turing.jl [12] have been widely used in many
scientific applications.

These software packages often provide two key user-facing com-
ponents: (1) a probabilistic programming language (PPL), which
allows users to specify Bayesian statistical models in code with
a familiar, mathematics-like syntax; and (2) an inference engine,
which is responsible for performing computational Bayesian infer-
ence once the model and data have been specified. Pigeons.jl fo-
cuses on the development of a new inference engine that employs
distributed, high-performance computing.

Inference engines available in existing software packages are varied
in their capabilities and limitations. For instance, the widely-used
Stan inference engine is only capable of handling real-valued (i.e.,
continuous) parameters. Other tools, such as JAGS, are capable of
handling discrete-valued parameters but are limited in their capabil-
ity to handle custom data-types (e.g. phylogenetic trees). Of those
that have the capability to model arbitrary data types, none have an
automatically distributed implementation to our knowledge. Tur-
ing.jl [12] offers another popular inference engine and PPL, how-
ever Pigeons.jl allows one to interface with several different PPLs
as well as to easily perform distributed computation.

There is also a vast literature on distributed and parallel Bayesian
inference algorithms [3, 6, 9, 16, 17, 19, 25, 31, 32, 35]. These
methods unfortunately do not lead to widely usable software pack-
ages because they either introduce unknown amounts of approxi-

mation error, involve significant communication cost, or reduce the
generality of Bayesian inference.

6. Conclusion
Pigeons.jl is a Julia package that enables users with no experience
in distributed computing to efficiently approximate posterior distri-
butions and solve challenging Lebesgue integration problems over
a distributed computing environment. The core algorithm behind
Pigeons.jl is distributed, non-reversible parallel tempering [29, 27].
Pigeons.jl can be used in a multi-threaded context, as well as dis-
tributed over up to thousands of MPI-communicating machines.
Further, Pigeons.jl is designed so that for a given seed, the output
is identical regardless of the number of threads or processes used.

7. Acknowledgements
NS acknowledges the support of a Vanier Canada Graduate Schol-
arship. PT acknowledges the support of the Black Hole Initiative at
Harvard University, which is funded by grants from the John Tem-
pleton Foundation and the Gordon and Betty Moore Foundation
to Harvard University. PT also acknowledges support by the Na-
tional Science Foundation grants AST-1935980 and AST-2034306
and the Gordon and Betty Moore Foundation (GBMF-10423). SS
acknowledges the support of EPSRC grant EP/R034710/1 CoSines.
ABC and TC acknowledge the support of an NSERC Discovery
Grant. We also acknowledge use of the ARC Sockeye computing
platform from the University of British Columbia, as well as cloud
computing resources provided by Oracle.

8. References

[1] Kazunori Akiyama, Antxon Alberdi, Walter Alef, Juan Car-
los Algaba, Richard Anantua, Keiichi Asada, Rebecca Azu-
lay, Uwe Bach, Anne-Kathrin Baczko, David Ball, et al. First
Sagittarius A* Event Horizon Telescope results. IV. Vari-
ability, morphology, and black hole mass. The Astrophys-
ical Journal Letters, 930(2):L15, 2022. doi:10.3847/2041-
8213/ac6736.

[2] Kazunori Akiyama, Juan Carlos Algaba, Antxon Alberdi,
Walter Alef, Richard Anantua, Keiichi Asada, Rebecca Azu-
lay, Anne-Kathrin Baczko, David Ball, Mislav Baloković,
et al. First M87 Event Horizon Telescope results. VII. Po-
larization of the ring. The Astrophysical Journal Letters,
910(1):L12, 2021. doi:10.3847/2041-8213/abe71d.

[3] Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On
Markov chain Monte Carlo methods for tall data. The Jour-
nal of Machine Learning Research, 18(1):1515–1557, 2017.

[4] Miguel Biron-Lattes, Nikola Surjanovic, Saifuddin Syed,
Trevor Campbell, and Alexandre Bouchard-Côté. au-
toMALA: Locally adaptive Metropolis-adjusted Langevin
algorithm. In International Conference on Artificial In-
telligence and Statistics, pages 4600–4608. PMLR, 2024.
doi:10.48550/arXiv.2310.16782.

[5] Alexandre Bouchard-Côté, Kevin Chern, Davor Cubranic, Sa-
hand Hosseini, Justin Hume, Matteo Lepur, Zihui Ouyang,
and Giorgio Sgarbi. Blang: Bayesian declarative modeling of
general data structures and inference via algorithms based on
distribution continua. Journal of Statistical Software, 103:1–
98, 2022. doi:10.18637/jss.v103.i11.

[6] Anthony E Brockwell. Parallel Markov chain Monte
Carlo simulation by pre-fetching. Journal of Compu-

11

http://dx.doi.org/10.3847/2041-8213/ac6736
http://dx.doi.org/10.3847/2041-8213/ac6736
http://dx.doi.org/10.3847/2041-8213/abe71d
http://dx.doi.org/10.48550/arXiv.2310.16782
http://dx.doi.org/10.18637/jss.v103.i11

The Proceedings of the JuliaCon Conferences 7(69), 2025

tational and Graphical Statistics, 15(1):246–261, 2006.
doi:10.1198/106186006X100579.

[7] F. Warren Burton and Rex L. Page. Distributed random
number generation. Journal of Functional Programming,
2(2):203–212, 1992. doi:10.1017/S0956796800000320.

[8] Simon Byrne, Lucas C Wilcox, and Valentin Churavy. MPI.jl:
Julia bindings for the Message Passing Interface. In Proceed-
ings of the JuliaCon Conferences, volume 1, page 68, 2021.
doi:10.21105/jcon.00068.

[9] Ben Calderhead. A general construction for parallelizing
Metropolis-Hastings algorithms. Proceedings of the Na-
tional Academy of Sciences, 111(49):17408–17413, 2014.
doi:10.1073/pnas.1408184111.

[10] Bob Carpenter, Andrew Gelman, Matthew D Hoffman,
Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus
Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan:
a probabilistic programming language. Journal of Statistical
Software, 76(1), 2017. doi:10.18637/jss.v076.i01.

[11] Josh Day and Hua Zhou. OnlineStats.jl: A Julia package for
statistics on data streams. Journal of Open Source Software,
5(46), 2020. doi:10.21105/joss.01816.

[12] Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: A lan-
guage for flexible probabilistic inference. In International
Conference on Artificial Intelligence and Statistics, pages
1682–1690. PMLR, 2018. doi:10.17863/CAM.42246.

[13] John Geweke. Getting it right: Joint distribution
tests of posterior simulators. Journal of the Amer-
ican Statistical Association, 99(467):799–804, 2004.
doi:10.1198/016214504000001132.

[14] H Gota, MW Binderbauer, T Tajima, A Smirnov, S Putvin-
ski, M Tuszewski, SA Dettrick, DK Gupta, S Ko-
repanov, RM Magee, et al. Overview of C-2W: high
temperature, steady-state beam-driven field-reversed con-
figuration plasmas. Nuclear Fusion, 61(10):106039, 2021.
doi:10.1088/1741-4326/ac2521.

[15] Kurt Hornik, Friedrich Leisch, Achim Zeileis, and M Plum-
mer. JAGS: a program for analysis of Bayesian graphical
models using Gibbs sampling. In Proceedings of the 3rd In-
ternational Workshop on Distributed Statistical Computing,
volume 2, 2003.

[16] Pierre E Jacob, John O’Leary, and Yves F Atchadé. Unbiased
Markov chain Monte Carlo methods with couplings. Journal
of the Royal Statistical Society: Series B (Statistical Method-
ology), 82(3):543–600, 2020. doi:10.1111/rssb.12336.

[17] Pierre E Jacob, Christian P Robert, and Murray H
Smith. Using parallel computation to improve indepen-
dent Metropolis–Hastings based estimation. Journal of Com-
putational and Graphical Statistics, 20(3):616–635, 2011.
doi:10.1198/jcgs.2011.10167.

[18] P. L’Ecuyer. Efficient and portable combined random num-
ber generators. Communications of the ACM, 31(6):742–751,
June 1988. doi:10.1145/62959.62969.

[19] Anthony Lee, Christopher Yau, Michael B Giles, Ar-
naud Doucet, and Christopher C Holmes. On the utility
of graphics cards to perform massively parallel simula-
tion of advanced Monte Carlo methods. Journal of Com-
putational and Graphical Statistics, 19(4):769–789, 2010.
doi:10.1198/jcgs.2010.10039.

[20] David Lunn, Christopher Jackson, Nicky Best, Andrew
Thomas, and David Spiegelhalter. The BUGS Book: A Prac-
tical Introduction to Bayesian Analysis. CRC Press, 2013.
doi:10.1201/b13613.

[21] David Lunn, David Spiegelhalter, Andrew Thomas, and
Nicky Best. The BUGS project: evolution, critique and future
directions. Statistics in Medicine, 28(25):3049–3067, 2009.
doi:10.1002/sim.3680.

[22] David J Lunn, Andrew Thomas, Nicky Best, and
David Spiegelhalter. WinBUGS — a Bayesian mod-
elling framework: concepts, structure, and extensi-
bility. Statistics and Computing, 10:325–337, 2000.
doi:10.1023/A:1008929526011.

[23] Sohrab Salehi, Farhia Kabeer, Nicholas Ceglia, Mirela An-
dronescu, Marc J Williams, Kieran R Campbell, Tehmina
Masud, Beixi Wang, Justina Biele, Jazmine Brimhall, et al.
Clonal fitness inferred from time-series modelling of single-
cell cancer genomes. Nature, 595(7868):585–590, 2021.
doi:10.1038/s41586-021-03648-3.

[24] John Salvatier, Thomas V Wiecki, and Christopher Fonnes-
beck. Probabilistic programming in Python using PyMC3.
PeerJ Computer Science, 2:e55, 2016. doi:10.7717/peerj-
cs.55.

[25] Steven L Scott, Alexander W Blocker, Fernando V Bonassi,
Hugh A Chipman, Edward I George, and Robert E
McCulloch. Bayes and big data: The consensus Monte
Carlo algorithm. International Journal of Management Sci-
ence and Engineering Management, 11(2):78–88, 2016.
doi:10.1080/17509653.2016.1142191.

[26] Guy L Steele Jr, Doug Lea, and Christine H Flood. Fast split-
table pseudorandom number generators. ACM SIGPLAN No-
tices, 49(10):453–472, 2014. doi:10.1145/2660193.2660195.

[27] Nikola Surjanovic, Saifuddin Syed, Alexandre Bouchard-
Côté, and Trevor Campbell. Parallel tempering with a varia-
tional reference. In Advances in Neural Information Process-
ing Systems, 2022.

[28] Nikola Surjanovic, Saifuddin Syed, Alexandre Bouchard-
Côté, and Trevor Campbell. Uniform ergodicity of parallel
tempering with efficient local exploration. arXiv:2405.11384,
2024. doi:10.48550/arXiv.2405.11384.

[29] Saifuddin Syed, Alexandre Bouchard-Côté, George Deli-
giannidis, and Arnaud Doucet. Non-reversible parallel tem-
pering: a scalable highly parallel MCMC scheme. Journal
of Royal Statistical Society, Series B, 84:321–350, 2021.
doi:10.1111/rssb.12464.

[30] Saifuddin Syed, Vittorio Romaniello, Trevor Camp-
bell, and Alexandre Bouchard-Côté. Parallel tempering
on optimized paths. In International Conference on
Machine Learning, pages 10033–10042. PMLR, 2021.
doi:10.48550/arXiv.2102.07720.

[31] Xiangyu Wang, Fangjian Guo, Katherine A Heller, and
David B Dunson. Parallelizing MCMC with random partition
trees. Advances in Neural Information Processing Systems,
28, 2015. doi:10.48550/arXiv.1506.03164.

[32] Changye Wu and Christian P Robert. Average of recen-
tered parallel MCMC for big data. arXiv:1706.04780, 2017.
doi:10.48550/arXiv.1706.04780.

[33] Wangang Xie, Paul O Lewis, Yu Fan, Lynn Kuo, and Ming-
Hui Chen. Improving marginal likelihood estimation for
Bayesian phylogenetic model selection. Systematic Biology,
60(2):150–160, 2011. doi:10.1093/sysbio/syq085.

12

http://dx.doi.org/10.1198/106186006X100579
http://dx.doi.org/10.1017/S0956796800000320
http://dx.doi.org/10.21105/jcon.00068
http://dx.doi.org/10.1073/pnas.1408184111
http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.21105/joss.01816
http://dx.doi.org/10.17863/CAM.42246
http://dx.doi.org/10.1198/016214504000001132
http://dx.doi.org/10.1088/1741-4326/ac2521
http://dx.doi.org/10.1111/rssb.12336
http://dx.doi.org/10.1198/jcgs.2011.10167
http://dx.doi.org/10.1145/62959.62969
http://dx.doi.org/10.1198/jcgs.2010.10039
http://dx.doi.org/10.1201/b13613
http://dx.doi.org/10.1002/sim.3680
http://dx.doi.org/10.1023/A:1008929526011
http://dx.doi.org/10.1038/s41586-021-03648-3
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.1080/17509653.2016.1142191
http://dx.doi.org/10.1145/2660193.2660195
http://dx.doi.org/10.48550/arXiv.2405.11384
http://dx.doi.org/10.1111/rssb.12464
http://dx.doi.org/10.48550/arXiv.2102.07720
http://dx.doi.org/10.48550/arXiv.1506.03164
http://dx.doi.org/10.48550/arXiv.1706.04780
http://dx.doi.org/10.1093/sysbio/syq085

The Proceedings of the JuliaCon Conferences 7(69), 2025

[34] Zhanzhan Zhao, Cyrus Hettle, Swati Gupta, Jonathan Christo-
pher Mattingly, Dana Randall, and Gregory Joseph Her-
schlag. Mathematically quantifying non-responsiveness of
the 2021 Georgia congressional districting plan. In EAAMO
‘22: Equity and Access in Algorithms, Mechanisms, and Op-
timization, pages 1–11, 2022. doi:10.1145/3551624.3555300.

[35] Jun Zhu, Jianfei Chen, Wenbo Hu, and Bo Zhang. Big
learning with Bayesian methods. National Science Review,
4(4):627–651, 2017. doi:10.1093/nsr/nwx044.

13

http://dx.doi.org/10.1145/3551624.3555300
http://dx.doi.org/10.1093/nsr/nwx044

	Introduction
	Latest documentation
	Problem formulation
	What is of interest to the general Julia developer?

	Examples
	Targets
	Other targets

	Outputs
	Standard output
	Plots
	Estimate of normalization constant
	Online statistics
	Off-memory processing
	PT diagnostics

	Parallel and distributed PT
	Running MPI locally
	Running MPI on a cluster

	Additional options

	Parallel tempering
	Overview of PT
	Local exploration and communication
	Distributed implementation
	Distributed mapping from chains to machines
	MPI implementation details
	Load balancing

	Weak scaling of PT
	Relevance of DMP versus SMP

	Strong parallelism invariance
	Distributed reduction and floating point non-associativity
	Splittable random streams

	Related work
	Conclusion
	Acknowledgements
	References

