
High-performance xPU Stencil Computations in Julia
Samuel Omlin1 and Ludovic Räss2, 3

1Swiss National Supercomputing Centre (CSCS), ETH Zurich, Lugano, Switzerland
2Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland

3Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland

ABSTRACT
We present an efficient approach for writing architecture-agnostic
parallel high-performance stencil computations in Julia, which
is instantiated in the package ParallelStencil.jl. Pow-
erful metaprogramming, costless abstractions and multiple dis-
patch enable writing a single code that is suitable for both
productive prototyping on a single CPU thread and high per-
formance production runs on GPU or CPU workstations or, if
used in combination with distributed parallelization packages as
ImplicitGlobalGrid.jl, on supercomputers. We demon-
strate performance close to the theoretical upper bound on GPUs
for a 3-D heat diffusion solver, which is a massive improvement
over reachable performance with CUDA.jl Array programming.

Keywords
Julia, xPU, GPU, Stencil Computations, Code Genera-
tion, Architecture-agnostic, Shared Memory Parallelization,
Communication-Computation Overlap, Supercomputing

1. Introduction
Graphics processing units (GPUs) capable of general-purpose com-
puting have revolutionized the hardware industry and as a result
High Performance Computing (HPC) since the dawn of the 21st

century. While industry and academia are doing their best to adapt
their software to the new hardware landscape, the latter continues
to be reshaped constantly. In addition, new unconventional highly
innovative hardware developments driven by the powerful AI in-
dustry (e.g. the Cerebras WSEs and Graphcore IPUs) draw up yet
the next potential hardware revolution. In the light of the high pace
and increasing diversity in hardware evolution, the HPC commu-
nity has identified the 3 “P”s - (scalable) Performance, (perfor-
mance) Portability and Productivity - as fundamental requirements
for today’s and tomorrow’s software development. The approach
and package development presented in this paper responds to each
of the 3 “P”s. We present an approach for automatic paralleliza-
tion and optimization of architecture-agnostic stencil computations
deployable on both GPU and CPU (in the remainder we use xPU
to refer simultaneously to GPU and CPU); the computations can
furthermore automatically hide the communication needed for dis-
tributed parallelization as required for large scale supercomputing
(note that the distributed parallelization itself is not part of this con-
tribution).

� �
1 using ParallelStencil
2 using ParallelStencil . FiniteDifferences3D
3 @init_parallel_stencil (CUDA , Float64 , 3)
4

5 @parallel memopt = true optvars =T function step !(
6 T2 , T, Ci , lam , dt , _dx , _dy , _dz)
7 @inn (T2) = @inn (T) + dt *(
8 lam * @inn (Ci)*(@d2_xi (T)* _dx ˆ2 +
9 @d2_yi (T)* _dy ˆ2 +

10 @d2_zi (T)* _dz ˆ2))
11 return
12 end
13

14 function diffusion3D ()
15 # Physics
16 lam = 1 .0 # Thermal conductivity
17 c0 = 2 .0 # Heat capacity
18 lx = ly = lz = 1 .0 # Domain length x|y|z
19

20 # Numerics
21 nx = ny = nz = 512 # Nb gridpoints x|y|z
22 nt = 100 # Nb time steps
23 dx = lx /(nx -1) # Space step in x
24 dy = ly /(ny -1) # Space step in y
25 dz = lz /(nz -1) # Space step in z
26 _dx , _dy , _dz = 1 .0 / dx , 1 .0 / dy , 1 .0 / dz
27

28 # Initial conditions
29 T = @ones (nx , ny , nz).*1 .7 # Temperature
30 T2 = copy (T) # Temperature (2 nd)
31 Ci = @ones (nx , ny , nz)./ c0 # 1/ Heat capacity
32

33 # Time loop
34 dt = min (dx ˆ2, dy ˆ2, dz ˆ2)/ lam / maximum (Ci)/6 .1
35 for it = 1: nt
36 @parallel memopt = true step !(
37 T2 , T, Ci , lam , dt , _dx , _dy , _dz)
38 T, T2 = T2 , T
39 end
40

41 end
42

43 diffusion3D ()� �
Fig. 1. Stencil-based 3-D heat diffusion xPU solver implemented using
ParallelStencil with time step kernel written in math-close notation.

2. Approach
Our approach for the expression of architecture-agnostic high-
performance stencil computations relies on the usage of Julia’s
powerful metaprogramming capacities, costless high-level abstrac-
tions and multiple dispatch. We have instantiated the approach in

1

The Proceedings of the JuliaCon Conferences 6(64), 2024

Fig. 2. Effective memory throughput Teff (and conversion to Gpts/s)
for Nvidia Tesla A100 SXM4 and P100 PCIe GPUs, respectively, and
for 2 x 16 Core AMD EPYC 7282 and 12 Core Intel Xeon E5-2690
v3 CPUs, respectively. The error bars visualize the 95% confidence in-
terval of the reported medians (20 samples). The raw data and plot-
ting script are available in github.com/omlins/ParallelStencil.jl/
tree/JuliaConProceeding2022/paper.

the Julia package ParallelStencil.jl. Using ParallelStencil, a
simple call to the macro @parallel is sufficient to parallelize and
launch a kernel that contains stencil computations, which can be ex-
pressed explicitly or with math-close notation. The latter is defined
in isolated submodules (e.g., line 2) that are easily understandable
and extensible by domain scientists in order to support new numer-
ical methods (currently available is math-close notation for finite
differences). Fig. 1 shows a stencil-based 3-D heat diffusion xPU
solver implemented using ParallelStencil, where the kernel defining
an explicit time step is written in math-close notation (lines 5-12)
and the macro @parallel is used for its parallelization (line 5) and
launch (line 36).
The package used underneath for parallelization is defined in a
initialization call beforehand (Fig. 1, line 3). Currently supported
are CUDA.jl [1] for running on GPU, and Base.Threads for
CPU. Leveraging metaprogramming, ParallelStencil automatically
generates high-performance code suitable for the target hardware,
and automatically derives kernel launch parameters from the ker-
nel arguments by analyzing the bounds of the contained arrays.
Certain stencil-computation-specific optimizations leveraging, e.g.,
the on-chip memory of GPUs need to be activated with keyword
arguments to the macro @parallel (Fig. 1, line 5). A set of
architecture-agnostic low level kernel language constructs allows
for explicit low level kernel programming when useful, e.g., for
the explicit control of shared memory on the GPU (these low level
constructs are GPU-computing-biased).
Arrays are automatically allocated on the hardware chosen for the
computations (GPU or CPU) when using the allocation macros pro-
vided by ParallelStencil (Fig. 1, lines 29-31), avoiding any need of
code duplication. Moreover, the allocation macros are fully declar-
ative in order to let ParallelStencil choose the best data layout in
memory. Notably, logical arrays of structs (or of small arrays) can
be either laid out in memory as arrays of structs or as structs of ar-
rays accounting for the fact that each of these allocation approaches
has its use cases where it performs best.
ParallelStencil is seamlessly interoperable with packages for dis-
tributed parallelization, as e.g. ImplicitGlobalGrid.jl [4] or
MPI.jl, in order to enable high-performance stencil computations

on GPU or CPU supercomputers. Communication can be hidden
behind computation with as simple macro call [4]. The usage of
this feature solely requires that communication can be triggered ex-
plicitly as it is possible with, e.g., ImplicitGlobalGrid and MPI.jl.

3. Results
We here report the performance achieved on different architectures
with the 3-D heat diffusion xPU solver (Fig. 1) and of an equivalent
solver with explicit notation for the stencil computations and com-
pare it to the performance obtained with a Julia solver written in a
traditional way using GPU or CPU array broadcasting. We observe
that using ParallelStencil we achieve an effective memory through-
put, Teff , of 496 GB/s and 1262 GB/s on the Nvidia P100 and A100
GPUs, which can reach a peak throughput, Tpeak, of 559 GB/s and
1370 GB/s, respectively [2]; this means we reach 89% and 92%
of the respective hardware’s theoretical performance upper bound
(Teff and its interpretation are explained, e.g., in [6]). Furthermore,
using ParallelStencil we obtain a speedup of up to a factor ≈ 5 and
≈ 29 over the versions with GPU and CPU array broadcasting (the
latter is not capable of multi-threading), respectively. Moreover, we
have translated solvers for highly nonlinear 3-D poro-visco-elastic
two-phase flow and 3-D reactive porosity waves written in CUDA
C using MPI to Julia by employing ParallelStencil (and Implicit-
GlobalGrid for the distributed parallelization) and compared ob-
tained performance. The translated solvers achieved 90% and 98%
of the performance of the respective original CUDA C solvers. In
addition, relying on ParallelStencil‘s feature to hide communica-
tion behind computation, the 3-D poro-visco-elastic two-phase flow
solver achieved over 95% parallel efficiency on up to 1024 GPUs
[4].

4. Conclusions
We have shown that ParallelStencil enables scalable performance,
performance portability and productivity and responds to the chal-
lenge of addressing the 3 “P”s in all of its aspects. Moreover, we
have outlined the effectiveness and wide applicability of our ap-
proach within geosciences. Our approach is naturally in no sense
limited to geosciences as stencil computations are commonly used
in many disciplines across all of science. We illustrated this in re-
cent contributions, where we showcased a computational cogni-
tive neuroscience application modelling visual target selection us-
ing ParallelStencil and MPI.jl [5] and a quantum fluid dynamics
solver using the nonlinear Gross-Pitaevski equation implemented
with ParallelStencil (and ImplicitGlobalGrid) [3].

5. Acknowledgments
This work was supported by a grant from the Swiss National Su-
percomputing Centre (CSCS) under project ID c23 through the
Platform for Advanced Scientific Computing (PASC) program. We
acknowledge A100 DGX-1 computing resources at VAW, ETH
Zurich.

6. References

[1] T. Besard, C. Foket, and B. De Sutter. Effective extensible pro-
gramming: unleashing Julia on GPUs. IEEE Transactions on
Parallel and Distributed Systems, 30(4):827–841, 2018.

[2] Tom Deakin, Andrei Poenaru, Tom Lin, and Simon McIntosh-
Smith. Tracking Performance Portability on the Yellow Brick

2

github.com/omlins/ParallelStencil.jl/tree/JuliaConProceeding2022/paper
github.com/omlins/ParallelStencil.jl/tree/JuliaConProceeding2022/paper

The Proceedings of the JuliaCon Conferences 6(64), 2024

Road to Exascale. In 2020 IEEE/ACM International Work-
shop on Performance, Portability and Productivity in HPC
(P3HPC), pages 1–13, GA, USA, November 2020. IEEE.

[3] S. Omlin, L. Räss, N. Keepfer, G. Kwasniewski, B. Malvoisin,
and Y. Y. Podladchikov. Solving Nonlinear Partial Differential
Equations on GPU Supercomputers Using Julia. PASC21 con-
ference, 2021.

[4] S. Omlin, L. Räss, and I. Utkin. Distributed Parallelization
of xPU Stencil Computations in Julia. Proc. JuliaCon Conf.,
page 2, 2022.

[5] S. Omlin, L. Räss, I. Utkin, V. Narayanan, and M. Senden. De-
velopment of Multi-GPU Solvers for Nonlinear Multi-Physics
with Julia. PASC22 conference, 2022.

[6] L. Räss, I. Utkin, T. Duretz, S. Omlin, and Y. Y. Podlad-
chikov. Assessing the robustness and scalability of the accel-
erated pseudo-transient method. Geoscientific Model Develop-
ment, 15(14):5757–5786, 2022.

3

	Introduction
	Approach
	Results
	Conclusions
	Acknowledgments
	References

