
Distributed Parallelization of xPU Stencil Computations in
Julia

Samuel Omlin1, Ludovic Räss2, 3, and Ivan Utkin2, 3

1Swiss National Supercomputing Centre (CSCS), ETH Zurich, Lugano, Switzerland
2Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland

3Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland

ABSTRACT
We present a straightforward approach for distributed paralleliza-
tion of stencil-based xPU applications on a regular staggered grid,
which is instantiated in the package ImplicitGlobalGrid.jl.
The approach allows to leverage remote direct memory access and
enables close to ideal weak scaling of real-world applications on
thousands of GPUs. The communication costs can be easily hidden
behind computation.

Keywords
Julia, Distributed Parallelization, xPU, GPU, Supercomputing,
Stencil Computations, Staggered Grid

1. Introduction
In light of the high pace of hardware evolution since the dawn of
the 21st century, the HPC community has identified the 3 “P”s -
(scalable) Performance, (performance) Portability and Productivity
- as fundamental requirements for today’s and tomorrow’s software
development. The approach and package development presented in
this paper responds to each of the 3 “P”s. We present an approach
for automatic and architecture-agnostic distributed parallelization
of stencil-based xPU applications on a regular staggered grid (with
xPU we refer simultaneously to GPU and CPU in this paper).

2. Approach
The here presented approach renders the distributed parallelization
of stencil-based xPU applications on a regular staggered grid al-
most trivial. We have instantiated the approach in the Julia package
ImplicitGlobalGrid.jl. A highlight in the design of Implicit-
GlobalGrid is the automatic implicit creation of the global compu-
tational grid based on the number of processes the application is run
with (and based on the process topology, which can be explicitly
chosen by the user or automatically defined). As a consequence,
the user only needs to write a code to solve his problem on one
xPU (local grid); then, as little as three functions can be enough to
transform a single xPU application into a massively scaling multi-
xPU application: a first function creates the implicit global stag-
gered grid, a second function performs a halo update on it, and a
third function finalizes the global grid. ImplicitGlobalGrid does not
have any requirements on the packages used to obtain good per xPU
performance (shared memory parallelization and optimisations can,
e.g., be performed with ParallelStencil [3] or any other package that

might suit this task). Fig. 1 shows a stencil-based 3-D heat diffu-
sion xPU solver, where distributed parallelization is achieved with
the three ImplicitGlobalGrid functions mentioned (lines 23, 38 and
43) plus some additional functions to query the size of the global
grid (lines 24-26; in this example ParallelStencil [3] is used to ob-
tain high per xPU performance).
ImplicitGlobalGrid relies on MPI.jl [2] to perform halo updates
close to hardware limits. For GPU applications, ImplicitGlobalGrid
leverages remote direct memory access when CUDA- or ROCm-
aware MPI is available and, otherwise, uses highly optimized asyn-
chronous data transfer routines to move the data through the hosts.
In addition, pipelining is applied on all stages of the data trans-
fers, improving the effective throughput between GPU and GPU.
Low level management of memory, CUDA streams, ROCm queues
and signals permits to efficiently reuse send and receive buffers and
streams or queues and signals throughout an application without
putting the burden of their management to the user. Moreover, all
data transfers are performed on non-blocking high-priority streams
or queues, allowing to overlap the communication optimally with
computation. ParallelStencil.jl, e.g., can do so with a simple
macro call (Fig. 1, line 36).
Asymmetrical halos that could result from staggered grids and
would represent a considerable complexity are fully circumvented
in our approach: a field will only have halos in a given dimension
if the corresponding overlap between the local fields is at least two
cells wide; no halos are created if the overlap is only one cell wide
(redundant computation is done instead).
ImplicitGlobalGrid is fully interoperable with MPI.jl. By default,
it creates a Cartesian MPI communicator, which can be easily re-
trieved together with other MPI variables. Alternatively, an MPI
communicator can be passed to ImplicitGlobalGrid for usage. As
a result, ImplicitGlobalGrid’s functionality can be seamlessly ex-
tended using MPI.jl.
The modular design of ImplicitGlobalGrid, which heavily relies
on multiple dispatch, enables adding support for other hardware
with little development effort (including new kind of accelerators as
soon as they become programmable with Julia). Support for AMD
GPUs using the recently matured AMDGPU.jl package [5] could
be implemented shortly after as a result (Nvidia GPUs are sup-
ported using CUDA.jl [1]). ImplicitGlobalGrid supports at present
distributed parallelization for CUDA- and ROCm-capable GPUs as
well as for CPUs.

1

The Proceedings of the JuliaCon Conferences 6(65), 2024

� �
1 using ImplicitGlobalGrid
2 using ParallelStencil
3 using ParallelStencil . FiniteDifferences3D
4 @init_parallel_stencil (CUDA , Float64 , 3)
5

6 @parallel function step !(T2 ,T, Ci , lam , dt , dx , dy , dz)
7 @inn (T2) = @inn (T) + dt *(
8 lam * @inn (Ci)*(@d2_xi (T)/ dx ˆ2 +
9 @d2_yi (T)/ dy ˆ2 +

10 @d2_zi (T)/ dz ˆ2))
11 return
12 end
13

14 function diffusion3D ()
15 # Physics
16 lam = 1 .0 # Thermal conductivity
17 c0 = 2 .0 # Heat capacity
18 lx = ly = lz = 1 .0 # Domain length x|y|z
19

20 # Numerics
21 nx = ny = nz = 512 # Nb gridpoints x|y|z
22 nt = 100 # Nb time steps
23 me , = init_global_grid (nx , ny , nz)
24 dx = lx /(nx_g ()-1) # Space step in x
25 dy = ly /(ny_g ()-1) # Space step in y
26 dz = lz /(nz_g ()-1) # Space step in z
27

28 # Initial conditions
29 T = @ones (nx , ny , nz).*1 .7 # Temperature
30 T2 = copy (T) # Temperature (2 nd)
31 Ci = @ones (nx , ny , nz)./ c0 # 1/ Heat capacity
32

33 # Time loop
34 dt = min (dx ˆ2, dy ˆ2, dz ˆ2)/ lam / maximum (Ci)/6 .1
35 for it = 1: nt
36 @hide_communication (16 , 2, 2) begin
37 @parallel step !(T2 ,T, Ci , lam , dt , dx , dy , dz)
38 update_halo !(T2)
39 end
40 T, T2 = T2 , T
41 end
42

43 finalize_global_grid ()
44 end
45

46 diffusion3D ()� �
Fig. 1: Stencil-based 3-D heat diffusion xPU solver implemented using Im-
plicitGlobalGrid (and ParallelStencil).

3. Results
We here report the scaling achieved with the 3-D heat diffusion
xPU solver (Fig. 1) on up to 2197 Nvidia Tesla P100 GPUs on
the Piz Daint Supercomputer at the Swiss National Supercomput-
ing Centre (Fig. 2; 173, i.e., 2197 nodes is the biggest cubic node
topology that can be submitted in the normal queue of Piz Daint).
We observe a parallel efficiency of 93% on 2197 GPUs. Moreover,
we have employed ImplicitGlobalGrid (and ParallelStencil) for the
parallelization of a solver for nonlinear 3-D poro-visco-elastic two-
phase flow and have also conducted a weak scaling experiment on
Piz Daint (Fig. 3). We observe a parallel efficiency of over 95% on
up to 1024 GPUs. As a performance reference, the solver imple-
mented in Julia achieved 90% of the per-node performance of the
respective original solver written in CUDA C using MPI.

4. Conclusions
We have shown that ImplicitGlobalGrid enables scalable perfor-
mance, performance portability and productivity and addresses the

Fig. 2: Parallel weak scaling of the 3-D heat diffusion solver (Fig. 1) from
1 to 2197 (173) Nvidia P100 GPUs on Piz Daint at CSCS (problem size
per GPU is 5123). The blue surface visualizes the 95% confidence interval
of the reported medians (20 samples). Per-node performance is discussed in
[3]. The raw data and plotting script are available in github.com/omlins/
ImplicitGlobalGrid.jl/tree/master/paper.

Fig. 3: Parallel weak scaling of the nonlinear 3-D poro-visco-elastic two-
phase flow solver from 1 to 1024 Nvidia P100 GPUs on Piz Daint at
CSCS (problem size per GPU is 3823). The blue and orange surfaces
visualize the 95% confidence interval of the reported medians (20 sam-
ples). For reference, the Julia solver achieved 90% of the per-node per-
formance of the corresponding CUDA C solver. The raw data and plotting
script are available in github.com/omlins/ImplicitGlobalGrid.jl/
tree/master/paper.

3 “P”s in all of its aspects. In addition, we have demonstrated the
effectiveness and wide applicability of our approach within geo-
sciences. Our approach is naturally in no sense limited to geo-
sciences as distributed parallelization based on halo updates is em-
ployed in many scientific disciplines. We illustrated this in a re-
cent contribution, where we showcased a quantum fluid dynamics
solver using the nonlinear Gross-Pitaevski equation implemented
with ImplicitGlobalGrid (and ParallelStencil) [4].

5. Acknowledgments
We would like to thank Julian Samaroo (MIT) for his pro-active
support for enabling AMDGPU in ImplicitGlobalGrid. This work
was supported by a grant from the Swiss National Supercomput-
ing Centre (CSCS) under project ID c23 through the Platform for
Advanced Scientific Computing (PASC) program.

2

github.com/omlins/ImplicitGlobalGrid.jl/tree/master/paper
github.com/omlins/ImplicitGlobalGrid.jl/tree/master/paper
github.com/omlins/ImplicitGlobalGrid.jl/tree/master/paper
github.com/omlins/ImplicitGlobalGrid.jl/tree/master/paper

The Proceedings of the JuliaCon Conferences 6(65), 2024

6. References
[1] T. Besard, C. Foket, and B. De Sutter. Effective extensible

programming: unleashing Julia on GPUs. IEEE Transactions
on Parallel and Distributed Systems, 30(4):827–841, 2018.
doi:10.1109/TPDS.2018.2872064.

[2] S. Byrne, L. C. Wilcox, and V. Churavy. MPI.jl:
Julia bindings for the Message Passing Interface.
In Proceedings of the JuliaCon Conferences, vol-
ume 1, page 68, 2021. doi:10.21105/jcon.00068.
https://github.com/JuliaParallel/MPI.jl.

[3] S. Omlin and L. Räss. High-performance xPU Stencil Com-
putations in Julia. Proceedings of the JuliaCon Conferences,
6(64):138, 2024. doi:10.21105/jcon.00138.

[4] S. Omlin, L. Räss, N. Keepfer, G. Kwasniewski, B. Malvoisin,
and Y. Y. Podladchikov. Solving Nonlinear Partial Differential
Equations on GPU Supercomputers Using Julia. PASC21 con-
ference, 2021.

[5] J. Samaroo, T. Besard, V. Churavy, D. Lin, and other con-
tributors. AMDGPU.jl: AMD GPU (ROCm) programming in
Julia. https://github.com/JuliaGPU/AMDGPU.jl, 2013.
doi:10.5281/zenodo.10040461.

3

http://dx.doi.org/10.1109/TPDS.2018.2872064
http://dx.doi.org/10.21105/jcon.00068
https://github.com/JuliaParallel/MPI.jl
http://dx.doi.org/10.21105/jcon.00138
https://github.com/JuliaGPU/AMDGPU.jl
http://dx.doi.org/10.5281/zenodo.10040461

	Introduction
	Approach
	Results
	Conclusions
	Acknowledgments
	References

