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ABSTRACT
The pipeline optimization problem in machine learning requires si-
multaneous optimization of pipeline structures and parameter adap-
tation of their elements. Having an elegant way to express these
structures can help lessen the complexity in the management and
analysis of their performances together with the different choices of
optimization strategies. With these issues in mind, we created the
AutoMLPipeline (AMLP) toolkit which facilitates the creation and
evaluation of complex machine learning pipeline structures using
simple expressions. We use AMLP to find optimal pipeline signa-
tures, datamine them, and use these datamined features to speed-up
learning and prediction. We formulated a two-stage pipeline op-
timization with surrogate modeling in AMLP which outperforms
other AutoML approaches with a 4-hour time budget in less than 5
minutes of AMLP computation time.
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1. Introduction
The typical machine learning (ML) workflow for classification and
prediction requires some or a combination of the following prepro-
cessing steps:

—data cleaning: Imputation, Interpolation, etc.
—feature transformation: Normalization, Scaling, One-hot encod-

ing, etc.
—feature selection: Anova, Correlation, etc.
—feature extraction: PCA, ICA, FactorAnalysis, etc.
—modeling: RandomForest, XGBoost, SVM, AdaBoost, etc.

Each step has several choices of functions to use, together with
their corresponding parameters to initialize. Optimizing the perfor-
mance of the entire pipeline is a combinatorial search for the proper
order and combination of preprocessing steps, optimization of their
corresponding parameters, and a search for the optimal model and
its hyper-parameters.

Because of close dependencies among these various steps to per-
form optimization, the entire process is commonly called com-
bined algorithm selection and hyper-parameter optimization or

CASH [9, 25]. Having an elegant way to express pipeline structures
can help lessen the complexity in the management and analysis of
the wide-array of choices of optimization routines. AMLP (Auto
ML Pipeline) toolkit aims to address this issue by supporting the
following features:

—Pipeline API that allows high-level description of modeling
and preprocessing workflow to support explainability and easy
dataminining of optimal pipeline signatures

—Symbolic pipeline parsing to facilitate easy expression of com-
plex pipeline structures

—Common API wrappers for ML libs including scikit-learn [21],
caret [17], etc.

—Easily extensible architecture by overloading two APIs: fit!
and transform!

—High-level implementation of meta-ensembles for the composi-
tion of ensembles (recursively if needed) to support robust pre-
diction routines.

—Categorical and numerical feature selectors for specialized pre-
processing routines based on types.

—High-level code of parallelized cross-validation (CV) routines by
leveraging on the multi-threading and distributed computing fea-
tures of the Julia language [6].

AMLP’s main feature is the use of relatively compact symbolic ex-
pression in pipeline composition. For instance, a pipeline expres-
sion to extract the numerical features (numf) for pca decomposi-
tion, concatenated with one-hot encoding (ohe) of categorical fea-
tures (catf) of a given data for RandomForest (rf) modeling can
be expressed as:� �

( numf |> pca ) + ( catf |> ohe ) |> rf� �
AMLP (AutoMLPipeline) is written in Julia language [6] to lever-
age on the latter’s support of modern features such as: multi-
ple dispatch, just-in-time (JIT) compilation, multi-threading, par-
allel and distributed computing, dynamic types, coroutines, inter-
active shell, high-performance, code specialization, metaprogram-
ming, and type inference. Pure Julia ML models in AMLP is easy
to maintain and extend by relying on just one programming lan-
guage because Julia’s JIT avoids the need to implement some
performance-critical tasks in C/C++.
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1.1 Related Work
AMLP’s main design was inspired by the Orchestra [14] package.
Early ML packages for Julia are wrappers of existing ML toolk-
its from scikit-learn in Python [26] and caret in R [22]. By hav-
ing common APIs across different ML implementations, Orches-
tra showed that one can mix and match ML preprocessing rou-
tines from caret, scikit-learn, and Julia seamlessly in a pipeline
by leveraging on PyCall [15] and RCall [3] wrapper libraries for
Python and R, respectively. Orchestra is a convenient package be-
cause there are many cases where implementations of ML functions
can be found exclusively in either scikit-learn or caret. Having both
libraries available for perusal is a great productivity boost for ma-
chine learners in Julia. Unfortunately, Orchestra package has not
been maintained for more than 6 years, but its legacy lives in the
AMLP’s design. Another popular toolkit in Julia ML ecosystem
is the MLJ [8] package developed at the Alan Turing Institute. It
serves as a meta-package of ML libraries both native to Julia as
well as scikit-learn.

IBM 1 Lale [12] is a toolkit in Python with sophisticated sup-
port of pipeline optimization useful for AutoML [18] algorithm
development. Lale builds on scikit-learn and extends it by sup-
porting features such as: automation, correctness checks, and in-
teroperability. Lale has consistent high-level interface for popular
AutoML algorithms such as: Hyperopt [5, 4], GridSearchCV [21],
and SMAC [13]. Lale supports easy comparison of the different Au-
toML algorithms for benchmarking and research. While AMLP is
at the early stage of development, its pipeline architecture can be
used as building blocks for the development of future AutoML al-
gorithms similar to Lale in Julia’s ecosystem.

2. AMLP Architecture
The expressions in Listing 1 describe the abstract type hier-
archy used in the AMLP toolkit. At the top of the hierarchy
is the Machine abstraction with abstract functions, fit! and
transform!, which are to be implemented by its subtypes. Call-
ing both functions in sequence are handled by fit_transform!.
A Machine has two subtypes: Computer and Workflow. A
Computer can either be a Transformer or a Learner while a
Workflow can be either a Pipeline or ComboPipeline.

All Machine subtypes are expected to define their own fit!
and transform! before they can be part of the elements in
a Workflow. Any Workflow instance uses these two functions
during training, feature transformation, prediction, and cross-
validation (CV). By convention in Julia [6], functions ending with
exclamation mark (!) mutate the value(s) of their arguments which
are done by fit! and transform! to update the internal states and
parameters of the Machine instance.

The AMLP workflow is based on the Orchestra [14] package which
drew its inspiration from the Unix pipeline [16]. The main elements
of a pipeline are a series of Computer instances with each instance
performing a specific task. A typical pipeline for classification or
prediction contains a series of transformers terminated by a learner.
During fit_transform!, these series of transformers act as filters
converting the input data into the same mathematical or statisti-

1IBM and the IBM logo are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current
list of IBM trademarks is available on http://ibm.com/trademark.

� �
1 abstract type Computer <: Machine
2 abstract type Workflow <: Machine
3 abstract type Learner <: Computer
4 abstract type Transformer <: Computer
5
6 function fit !( mc :: Machine , input :: DataFrame ,

output :: Vector )
7 error ( typeof ( mc )," has no implementation .")
8 end
9

10 function transform !( mc :: Machine , input :: DataFrame )
11 error ( typeof ( mc )," has no implementation .")
12 end
13
14 function fit_transform !( mc :: Machine , input ::

DataFrame , output :: Vector )
15 fit !( mc , input , output )
16 transform !( mc , input )
17 end� �

Listing 1: Abstract Type Hierarchy

cal transform before feeding them to the learner for training and
prediction. In a pipeline expression where the last element is not
a learner, fit_transform! acts as a feature filter or transformer
only.

The Pipeline instance processes linearly the sequence of infor-
mation among its elements. Its fit! implementation iteratively
calls its elements’ fit_transform! passing the output from one
Computer instance to the next Computer instance in the sequence.
Aside from sequential operations, two or more workflows can be
combined using the ComboPipeline instance.

The fit! and transform! functions for a Learner are equiva-
lent to training and prediction, respectively. A Learner instance
employs a particular machine learning algorithm indicated during
runtime to learn the mapping between its input and output during
fit! and applies the learned model to perform prediction during
transform!.

For a Transformer, fit! and transform! are preprocessing op-
erations to convert the training data into the same mathematical or
statistical transform or space embedding. Depending on the func-
tion used, fit! can be a noop (no operation) like in sqrt or log
transform. On the other hand, PCA or ICA uses fit! to compute
and store the coefficient matrix derived from its training input and
applies the same matrix in transform!.

2.1 AMLP workflow
The code in Listing 2 depicts the typical usage of the AMLP
toolkit. Lines 1–2 loads the AMLP package and the pro football
dataset [23, 27], respectively. The aim is to predict whether the
game is held at home or away based on the following (C)ategorical
or (N)umerical features: FavoritePoints (N), UnderdogPoints (N),
Pointspread (N), FavoriteName (C), UnderdogName (C), Year (N),
Week (N), Weekday (C), and Overtime (C).

Lines 5–10 of Listing 2 create instances of the preprocess-
ing elements to be included in the pipeline. The toolkit
uses the scikit-learn [21] wrappers, SKPreprocessor and
SKLearner, to instantiate its transformers and learner: PCA,
MinMaxScaler, and RandomForestClassifier. Other ele-
ments such as: OneHotEncoder, CatFeatureSelector, and
NumFeatureSelector are implemented in pure Julia.
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� �
1 using AMLP # load package
2 (X,Y) = getprofb () # load dataset
3
4 # Instantiate the pipeline elements
5 pca = SKPreprocessor (" PCA ")
6 mx = SKPreprocessor (" MinMaxScaler ")
7 ohe = OneHotEncoder ()
8 catf = CatFeatureSelector () # categorical columns
9 numf = NumFeatureSelector () # numerical columns

10 rf = SKLearner (" RandomForestClassifier ")
11
12 # Setup the ML pipeline
13 pipe = (( catf |> ohe ) + ( numf |> mx |> pca )) |> rf
14
15 # train and predict
16 prediction = fit_transform !( pipe ,X,Y)
17
18 # compute avg accuracy by 10 - fold cv
19 performance = crossvalidate ( pipe ,X,Y)� �

Listing 2: AMLP toolkit sample usage

In line 13 of Listing 2, the expression:� �
pipe = (( catf |> ohe ) + ( numf |> mx |> pca )) |> rf� �
describes the preprocessing workflow of the input data with
the RandomForest classifier as the learner. The expression,
(x |> f), is equivalent to f(x) while the expression, (x + y),
signifies feature union: ∪(x,y). The expression, (catf |> ohe),
selects columns with categorical features and transform them into
one-hot representation. In (numf |> mx |> pca)), numerical
columns are selected then scaled by MinMaxScaler and finally
embedded in PCA subspace. Both features are then concatenated
to become the input features of the RandomForest model (rf).

Line 13 of Listing 2 can also be written using function calls as:� �
Pipeline ( ComboPipeline ( Pipeline ( catf , ohe ),

Pipeline ( Pipeline ( numf , mx ), pca )), rf )� �
This latter expression looks less understandable compared to the
former. The simplicity of AMLP pipeline expression becomes more
significant in developing AutoML algorithms or in data mining
optimal pipelines among different datasets for surrogate model-
ing [19]. More examples of AMLP usage including its extensive
documentation and source code can be found in its open-source
github resource [to be referenced if accepted].

3. Pipeline search strategy benchmark
The search for an optimal pipeline can be treated as a matching
problem between a group of learners and a group of preprocess-
ing pipelines. The objective is to find the optimal pair of prepro-
cessing pipeline and learner such that their corresponding cross-
validation (CV) accuracy is the best among the rest of the pairs. We
refer to any of these pairs as an ML pipeline (MLPL) in contrast
to a preprocessing pipeline (PRPL) where the last element is not
a learner. The time complexity to search for all possible combina-
tions of MLPL is dependent on the number of learners as well as
the size of elements in the PRPL: n(PRPL) * n(learners).

3.1 Two-stage strategies
To avoid the brute-force approach of exhaustive search, we attack
the problem by decomposing the search into two stages:

—One-all search strategy uses an arbitrarily chosen learner as the
engine of CV in searching for the best preprocessing pipeline
performance in the first stage. The second stage proceeds by us-
ing the best PRPL found in the first stage to search for the best
learner.

—All-one search strategy uses an arbitrarily chosen PRPL as the
base pipeline to search for the best learner during the first stage.
The second stage uses the best learner found in the first stage to
search for the best PRPL.

We call the first strategy one-all to indicate the utilization of a sur-
rogate learner to evaluate all PRPL in the first stage. Similarly, we
call the second strategy all-one to indicate the evaluation of all
learners under a surrogate PRPL. To aid the comparison, we also
implemented the all-all strategy which is an exhaustive search of
the performance of all combinations of learners and PRPL to get
the best MLPL.

In our implementation, we call the pipeline consisting of scaler
(sc) and feature extractor (fx) a one-block PRPL, expressed
as: (sc |> fx). In the experiments, we use the maximum
of two-block PRPL, ((sc1 |> fx1) + (sc2 |> fx2)), where
sc1 != sc2 or fx1 != fx2. The pipeline can easily be extended
by adding more PRPL blocks depending on the complexity of the
dataset at the expense of longer computation time.

3.2 Experimental setup
Table 1 summarizes the statistical features of the 12 OpenML
datasets [27] used in the experiment. Also included are the best
results in a 4-hour time budget discussed in the review pa-
per of [28]. The comparison involves 5 AutoML approaches,
namely: TPOT [20], Auto-Sklearn [11, 10], ATM [24], Hyperopt-
Sklearn [5, 4], and Random Search [2]. The best results among
the 5 AutoML approaches from each dataset will be used as the
baseline comparison in the results and discussion of the succeeding
section of the paper. Among these 5 approaches, TPOT and ATM
have dominated the rankings in terms of best performance based on
the CV classification errors on the 12 datasets as shown in the last
two columns.

The AMLP experiments use the following transformers and learn-
ers including Noop (no operation):

—6 scalers: Standard, MinMax, Robust, Normalizer, PowerTrans-
fomer, Noop

—4 feature extractors: PCA, ICA, FactorAnalysis, Noop

—6 learners: RandomForest, AdaBoost, DecisionTree, Gradient-
Boosting, LinearSvm, RbfSvm

For the one-block PRPL experiment, the size of all MLPL for the
exhaustive search will be 6× 4× 6 = 144. A relatively small size
that can easily be evaluated to search for the optimal solution which
is ideal for experimental comparison with the two-stage strategies.
However, the size of all combinations of MLPL suddenly explodes
to more than 3,000 pipelines by just adding another PRPL block.
With 10-fold CV per MLPL, the exhaustive search requires 1440
CV operations for a one-block MLPL and more than 30,000 CV
operations for a two-block MLPL.
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Table 1. OpenML Datasets
Dataset NAs Size Cat Num Rows Cols Class Best Result AutoML

analcatdata 0 22K 5 0 9873 5 6 75.10 ± 02.59 ATM
breast-w 16 18K 1 9 699 10 2 01.44 ± 02.22 ATM

cmc 0 30K 8 2 1473 10 3 43.33 ± 01.52 TPOT
credit-app 67 39K 10 6 690 16 2 11.11 ± 03.52 ATM
eucalyptus 448 74K 6 14 736 20 5 35.41 ± 05.02 AutoSk
first-order 0 2.6M 1 51 6118 52 6 38.48 ± 01.95 TPOT

GestureSeg 0 3.3M 1 32 9873 33 5 32.78 ± 03.59 TPOT
jm1 25 826K 1 21 10885 22 2 18.13 ± 01.55 TPOT

profb 1200 25K 5 5 672 10 2 32.43 ± 05.84 TPOT
plants-shape 0 892K 1 64 1600 65 100 36.54 ± 03.53 AutoSk

sick 6064 300K 23 7 3772 30 2 01.30 ± 00.87 TPOT
soybean 2337 171K 36 0 683 36 19 06.59 ± 02.79 ATM

The one-all search strategy requires 6 × 4 = 24 one-block PRPL
matched to one learner for the first stage. The second stage requires
matching the best pipeline against 6 learners. In this strategy, a total
of 30 MLPL pipelines are needed to get the optimal or suboptimal
solution. With 10-fold CV per MLPL, one-all requires 300 CV op-
erations which is 4.8x smaller compared to the 1440 CV operations
needed for the exhaustive search strategy.

For the all-one strategy, 6 learners are matched to a single pipeline
in the first stage. The best learner found is then matched to 6 ×
4 = 24 PRPL in the second stage. In total, the all-one uses 30
MLPL which translates to 300 CV operations similar to the one-
all. The actual runtime performance for one-all and all-one in the
same dataset depends mostly on the best learner performance in
all-one and the surrogate learner performance in one-all.

All datasets undergo common cleaning workflow in all experi-
ments. The entire process is summarized in the following:� �
bp = colnarm |> rownarm |> (( catf |> ohe ) + numf )� �
For each dataset, column-wise removal (colnarm) of missing val-
ues (NA) is carried out on those columns with NA count greater than
10% of the row size followed by row-wise removal (rownarm) of
any remaining NAs. After NA removal, categorical features (catf)
of the dataset are transformed to one-hot (ohe) representation and
concatenated with its numerical features (numf).

3.3 Results and Discussion
Table 2 summarizes the performance of all-all strategy. The rank
represents the relative performance of the proposed algo relative to
the baseline performance of the best algorithm in Table 1. To dif-
ferentiate the rank where the baseline or the proposed algorithm is
significantly inferior or superior or equal in performance, the<,>,
and = are utilized, respectively using t-test at α = 0.05 level of sig-
nificance. For example, among the datasets, the all-all strategy in
Table 2 is significantly superior compared to the best baseline algo
in first-order-theo, profb, and plants-shape but significantly infe-
rior in sick and soybean datasets. The best baseline algo has similar
performance with the all-all strategy in the rest of the datasets. The
metric of performance is based on the average classification error
(AvgErr) using 10-fold CV. The ranking is based on AvgErr perfor-
mance of all-all in comparison to the 5 AutoML approaches [28]
summarized in Table 1.

The all-all median overall rank is 1 using one-block pipeline. Its
median runtime to perform one-block exhaustive search is 0.23
hour or 13.8 minutes per dataset. This result is encouraging be-
cause the median runtime is significantly less compared to the 5
AutoML algorithms with a 4-hour budget. Closely examining the
runtime of each dataset, plants-shape dataset requires 4.29 hours to
finish while the rest require at most 1.87 hours to run. Take note,
however, that the comparison for runtime is not a fair comparison,
as we did not have the time to repeat the experiments done in [28]
using the same machine with our two-stage strategies. Our experi-
ments were conducted using 2017 Model of MacBook Pro with 2.8
GHz Quad-Core Intel Core i7 and 16 GB of RAM.

The solution can be improved further by searching all two-block
pipelines, but the size of the search space becomes a limiting fac-
tor. Ideally, if either one-all or all-one has similar optimal results
with that of all-all, the runtime required will be significantly less
to attack the two-block MLPL. The succeeding discussions of the
results of experiments aim to find out if there is a significant run-
time saving in either one or both of the two-stage strategies based
on their performance relative to the exhaustive all-all strategy.

Tables 3 and 4 show the performance of one-all and all-one strate-
gies, respectively, for one-block MLPL. Their ranking is based on
their performances against the 5 AutoML algorithms. Table 3 sum-
marizes the performance of one-all using the RandomForest sur-
rogate. All other learners tested as surrogate have similar 2.0 to
2.5 median rank. The all-one strategy in Table 4 uses the pipeline
expression,(((catf |> ohe) + numf)) |> robustsc, as the
surrogate pipeline to search for the best learner in the first stage.
The expression indicates one-hot encoding (ohe) of the categorical
features (catf) combined with the numerical features (numf) and
transformed by robust scaling (robustsc).

Comparing Tables 2, 3 and 4, the all-one strategy median rank of
1 is similar to all-all and one-all but the all-one median validation
error of 27.75 ± 3.69 is better than all-all and one-all. The biggest
advantage of all-one is its speed which is significantly faster to both
all-all and one-all. Its median time duration for all 12 datasets is
just 0.05 hour (3 minutes) compared to the runtime median of 0.23
hour (13.8 minutes) for all-all and 0.11 hour (6 minutes) for one-
all.

Furthermore, the dataset with worst runtime in all-one is the jm1
which requires 0.45 hour or 27 minutes. This worst runtime is still
significantly less than the 4-hour budget allotted to the 5 AutoML
algorithms. It is interesting to note that most solutions in all-one
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Table 2. All-all (one-block) search strategy

Block

Dataset Rank AvgErr Std Time Sc Fx Learner

analcatdata-dmf 1, = 76.52 4.92 0.13 normalizer noop rbfsvc
breast-w 1, = 02.34 1.71 0.08 minmax noop rbfsvc

cmc 1, = 42.57 3.37 0.18 noop noop gb
credit-approval 1, = 11.42 2.60 0.09 normalizer noop rf

eucalyptus 1, = 36.02 6.61 0.17 noop noop gb
first-order-theo 1, > 36.61 1.44 1.27 noop noop rf

GestureSeg 1, = 31.96 1.28 1.87 minmax noop rf
jm1 1, = 17.97 0.61 1.84 stdsc noop rf

profb 1, > 25.59 5.15 1.84 stdsc noop lsvc
plants-shape 1, > 30.25 3.03 4.29 powertf pca rf

sick 4, < 06.40 0.70 0.41 noop noop gb
soybean 5, < 14.62 2.48 0.27 robustsc noop lsvc

Median 1 27.92 2.54 0.23

Table 3. One-all (one-block)

Block

Dataset Rank AvgErr Std Time Sc Fx Lr

analcatdata-dmf 1, = 78.42 5.77 0.35 minmax factA ada
breast-w 1, = 2.78 1.88 0.02 stdsc pca rbfsvc

cmc 4, < 45.76 2.94 0.02 norm noop gb
credit-approval 1, = 11.34 4.98 0.09 norm noop rf

eucalyptus 1, = 36.79 7.61 0.09 noop noop rf
first-order-theo 1, = 36.89 1.68 0.32 powertf noop rf

GestureSeg 1, = 32.04 1.16 0.15 noop noop rf
jm1 1, = 18.01 0.51 0.34 powertf noop rf

profb 1, = 28.87 4.86 0.09 noop ica rf
plants-shape 1, > 30.80 4.44 0.13 powertf pca rf

sick 4, < 6.60 0.66 0.06 robustsc pca rf
soybean 5, < 15.29 4.78 0.34 robustsc noop lsvc

Median 1 29.84 3.69 0.11

do not employ any feature extraction but only scaling. We can con-
sider the solutions in all-one to be sparsed relative to the dominant
presence of noop in the feature extraction part of the one-block
MLPL.

Inspired by these promising results, the next experiment applies the
all-one strategy to two-block MLPL with the results summarized in
Table 5. The all-one strategy achieves a 1 median rank similar to
one-block all-one but the two-block pipeline has much lower cross-
validation error compared to one-block pipeline (25.37 vs 27.75).
Similar to one-block all-one, the two-block is significantly superior
to the baseline algos in first-order-theo, profb, and plants-shape but
significantly inferior in sick and soybean datasets. The best algos in
the baseline has similar performance with the all-one strategy in
the rest of the datasets. While the runtime median of all-one is 2.62
hours, 3 datasets require more than 4 hours to finish. In the future,
it will be interesting to incorporate the time budget into the all-one
strategy and run the other AutoMLs in the same machine to have
fair comparison.

Using the all-one strategy, there is a trade-off in its applications
to one-block or two-block pipelines. The former has significantly

quick runtime but may not be optimal, while the latter may require
relatively longer runtime than the former for some datasets but with
a higher likelihood of being optimal.

Another interesting observation in Tables 2, 4, and 5 regarding the
composition of their best solutions is the high occurrence of noop.
We can consider their solutions to be sparsed because in many cases
they do not fully utilize the 2 out 5 non-noop scalers and 2 out of 3
non-noop feature extractors in their optimal pipelines. This insight
can be valuable by using the datamined signatures of the optimal
solutions to predict structure complexity of the pipeline for an effi-
cient search. By mapping data metafeatures and the corresponding
optimal pipeline signatures, we can train a metalearner to guide
which subset of pipelines or elements of the pipelines can be used
as a starting point in search.

Table 6 summarizes the results of implementing these insights us-
ing PRP and LR surrogate models. The PRP-surrogate is trained to
learn the mapping between dataset metafeatures and its correspond-
ing optimal pipeline signature complexity. Pipeline complexity has
4 categories based on the presence of noop. Category 1 has zero or
one noop, category 2 has two noops, etc. More noops imply less
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Table 4. All-one (one-block)

Block

Dataset Rank AvgErr Std Time Sc Fx Lr

analcatdata-dmf 1, = 77.92 3.42 0.01 noop noop rbfsvc
breast-w 1, = 2.34 2.08 0.01 robustsc noop rbfsvc

cmc 1, = 42.36 4.14 0.08 stdsc noop gb
credit-approval 1, = 11.26 3.72 0.03 norm noop rf

eucalyptus 1, = 36.44 4.60 0.04 robustsc noop rf
first-order-theo 1, > 36.48 2.08 0.17 powertf noop rf

GestureSeg 1, = 32.39 1.09 0.30 robustsc noop rf
jm1 1, = 18.08 0.96 0.45 stdsc noop rf

profb 1, > 25.14 6.42 0.02 robustsc noop lsvc
plants-shape 1, > 30.35 3.86 0.12 stdsc pca rf

sick 4, < 6.54 0.49 0.07 robustsc pca gb
soybean 5, < 14.66 3.96 0.01 stdsc noop rbfsvc

Median 1 27.75 3.57 0.05

Table 5. All-one (two-block)

Block 1 Block 2

Dataset Rank AvgErr Std Time Sc1 Fx1 Sc2 Fx2 Lr

analcatdata 1. = 75.54 4.91 0.56 minmax noop powertf factA ada
breast-w 1, = 2.11 1.65 0.41 norm noop minmax noop rbfsvc

cmc 1, = 42.57 3.45 2.28 stdsc noop robustsc noop gb
credit-app 1, = 11.03 4.59 0.50 stdsc noop powertf factA lsvc
eucalyptus 1, = 33.40 6.13 2.78 stdsc noop noop factA gb
first-order 1, > 36.37 2.49 5.51 noop ica noop noop rf

GestureSeg 1, = 30.46 1.03 9.69 norm ica stdsc noop rf
jm1 1, = 17.67 0.79 16.62 robustsc noop norm pca rf

profb 1, > 24.69 5.29 0.61 stdsc ica stdsc noop lsvc
plants-shape 1, > 26.05 2.77 3.97 stdsc factA norm pca rf

sick 4, < 6.26 1.01 2.65 robustsc pca noop noop gb
soybean 5, < 13.24 2.62 0.57 robustsc noop noop noop lsvc

Median/Mode 1 25.37 2.70 2.62 stdsc noop noop noop rf

pipeline complexity. On the other hand, the LR-surrogate is used to
learn the mapping between the dataset metafeatures with its corre-
sponding optimal learner type: Ensemble vs SVM. Both surrogate
models are trained using the OpenML-CC18 [7] datasets by ex-
tracting their metafeatures using pymfe [1]. The extracted datasets,
results, and Julia-based pseudocode for surrogate modeling can be
found in the supplementary material submission of the paper.

We use the all-one strategy as the baseline and extended it with
PRP and LR surrogates to find out their effect in prediction error
and computation time. While there is a 5% increase in error by us-
ing PRP-surrogate, the median computation time went down from
2.28 hours to just 4.2 minutes. In spite of the 5% drop in accu-
racy, PRP-surrogate median rank of 1 still indicates superior per-
formance relative to other AutoML approaches.

The exponential reduction in computation time of PRP-surrogate
is due to the use of smaller search space due to the removal of
unnecessary preprocessing elements. Incorporating further the LR-
surrogate increases the median prediction error by another 4% but
reduces the median computation time to just 2.4 minutes. The main
trade-off in relying on more surrogates is the reduction of computa-

tion time at the expense of less accurate prediction. Depending on
the requirements, using one or more surrogates can be necessary to
speed-up computation if the corresponding drop in prediction accu-
racy is acceptable which can be true in some application domains.

Among the datasets, the one- and two-stage strategies have con-
sistent poor performance in both sick and soybean problems. Both
datasets are characterized by large number of missing values com-
pared to the rest of the datasets. There are 6064 NAs in sick and
2337 NAs in soybean. The poor performance of the two-stage
strategies can be attributed to the non-implementation of imputa-
tion or interpolation filter in the basepipeline data cleaning rou-
tine. Future experiments will examine which imputation or interpo-
lation routines can be used to improve AMLP solutions for datasets
with significantly large number of missing data.

4. Conclusion
Based on the set of experiments we conducted, the all-one strat-
egy provides the optimal solution in a significantly shorter duration
relative to other AutoML algorithms. These results indicate that us-
ing a simple pipeline in the first stage consisting of one-hot encoded
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Table 6. All-one with Surrogates

Baseline: All-one Surrogate: Baseline+PRP Surrogates: Baseline+PRP+LR

Dataset Rank AvgErr Std Time Rank AvgErr Std Time Rank AvgErr Std Time

analcatdata 1, = 75.54 4.91 0.56 1, = 76.67 4.24 0.07 1, = 76.17 0.92 0.00
breast-w 1, = 02.11 1.65 0.41 1, = 02.49 1.70 0.02 1, = 02.33 2.49 0.00

cmc 1, = 42.57 3.45 2.28 1, = 42.84 4.64 0.07 1, = 44.13 3.68 0.01
credit-app 1, = 11.03 4.59 0.50 1, = 11.60 4.83 0.03 1, = 12.08 3.80 0.04
eucalyptus 1, = 33.40 6.13 2.78 1, = 36.37 7.03 0.16 1, = 35.63 6.27 0.22
first-order 1, > 36.37 2.49 5.51 1, = 36.73 2.18 0.13 1, = 36.63 2.07 0.28

GestureSeg 1, = 30.46 1.03 9.69 1, = 31.58 1.45 0.44 5, < 45.19 0.96 0.76
jm1 1, = 17.67 0.79 16.62 1, = 18.01 0.86 0.23 1, = 17.98 1.47 0.40

profb 1, > 24.69 5.29 0.61 1, > 24.86 6.02 0.02 1, > 24.41 4.42 0.04
plants-shape 1, > 26.05 2.77 3.97 1, > 32.06 2.93 0.17 3, < 44.31 5.53 0.61

soybean 5, < 13.24 2.62 0.57 5, < 14.29 3.55 0.02 5, < 14.29 4.83 0.03

Median 1 26.05 2.77 2.28 1 31.58 3.55 0.07 1 35.63 3.68 0.04

categorical features together with their numerical features under ro-
bust scaling provides a good representation of the dataset difficulty
for searching the best matched optimal learner from the group of
learners. The winning learner picked by the first stage can then be
used to improve the solution further by looking for a more optimal
match with the rest of the pipelines. These results double down the
importance of model selection over workflow and parameter opti-
mization which can be wasteful if the chosen model is sub-optimal.
The all-one computation speed can be exponentially reduced by
utilizing PRP and LR surrogates in exchange of lower accuracy but
remains competitive relative to other AutoML approaches.

The easy and straightforward experimental setup in the implemen-
tation of these series of experiments can be attributed to the usabil-
ity of Julia and AMLP toolbox. AMLP’s support for a high-level
description of the pipelines makes it trivial to track which among
the pipeline elements are dominant in providing optimal solutions.
These insights can be used in the development of the runtime search
strategy in future algorithms. Data mining optimal pipelines be-
come much easier because one can directly use these high-level
expressions to perform text-mining, frequency pattern mining, text
associations, and NLP on the elements and structure of the optimal
pipeline solutions.

The high-level and easy composability of AMLP can encourage
individuals to create more complex pipelines that can be barely un-
derstood. For similar reasons that regularization and information
criterion are employed in mathematical and statistical modeling,
any AutoML implementation relying on AMLP and similar toolk-
its must incorporate strategies that take into account a good balance
between pipeline complexity, accuracy, and explainability for easy
scrutiny, comprehensibility, and verification bias of its solutions.

Julia’s great allure can be attributed to its high-performance, in-
teractive, and dynamic type system together with its JIT compila-
tion feature. It addresses the two-language problem which is often
encountered as a critical issue in other interactive languages that
require performance-critical tasks. One major benefit of using Ju-
lia which may have profound impact in the scientific community
is the significant increase of code reuse and sharing brought about
by just having one language implementation. Without resorting to
low-level implementations (C/C++) in creating high-performance
libraries, program readability is significantly improved in Julia
ecosystem without sacrificing performance. The line that differen-

tiates between users and developers in Julia becomes blurred be-
cause Julia makes it effortless to transition between the two groups.
The ease of transition from being users to becoming developers in
Julia will be a boon for increasing productivity in research, experi-
mentation, development, and sharing of applications to wider fields
of study.

It is with this background that AMLP was developed. It started
as a hobby to learn Julia by implementing ML algorithms. Due
to its high performance, Julia provides a great playground to test
ideas and gain results easily, which then triggers the desire to test
more ideas, all achievable in a short amount of time. The resulting
explorations can easily be turned into a package which is highly
readable but at the same time highly efficient and fast. The open-
source AMLP is the product of such good usability in Julia. By
open sourcing AMLP, we want to pass on the benefits we received
from the machine learning, open-source, and Julia communities.
We are hoping that AMLP can serve as a machine learning play-
ground to those who want to study the application of ML workflow
and easily extend and benchmark their creations. The future goal is
to help users of AMLP and the Julia community in general to tran-
sition from being consumers to becoming producers of ML ideas
and share their creations with future generations and hopefully feed
them back to AMLP or other similar toolkits.
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