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ABSTRACT
Computing the range of a function is needed in several applica-
tion domains. During the past decades, several algorithms to com-
pute or approximate the range have been developed, each with
its own merits and limitations. Motivated by this, we introduce
RangeEnclosures.jl, a unified framework to bound the range
of univariate and multivariate functions. In addition to its own al-
gorithms, the package allows to easily integrate third-party algo-
rithms, offering a unified interface that can be used across different
domains and allows to easily benchmark different approaches.
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1. Introduction
Given a function f : D → R over a domain D ⊆ R, the range (or
image) is the set R = {y ∈ R | ∃x ∈ D : f(x) = y}. In practical
applications, we are interested in determining the interval range of
f , i.e., the smallest interval containing R. Unfortunately, comput-
ing the interval range of a multivariate function is NP-hard [9].
For this reason, we practically seek an enclosure E ⊇ R of the
interval range. A standard method to obtain an enclosure is to
evaluate the function with interval arithmetic [10], which how-
ever often produces a wide overestimation due to issues such as
the dependency problem [5] and the wrapping effect [11]. For this
reason, different algorithms have been developed over the past
decades [13], but each comes with its own strengths and weak-
nesses. This is visualized in Fig. 1, where the enclosure obtained
with plain interval arithmetic, called natural enclosure, is compared
to the result of a branch-and-bound algorithm. In general, when
choosing an algorithm to compute a function enclosure, a trade-off
between accuracy and computational efficiency has to be made.
We present RangeEnclosures.jl, a Julia [4] package offering a
unified framework to bound the range of univariate and multivariate
functions. The package comes with built-in solvers but also seam-
lessly integrates solvers defined in third-party libraries. This allows
to easily compare different approaches.

2. A tour through RangeEnclosures
In this section we give a quick overview of the API to bound
function ranges. The package offers several solvers for this pur-
pose, such as natural (interval) enclosure, mean-value form [10],
Moore-Skelboe algorithm [7], branch-and-bound [8] and Taylor

Fig. 1. Two enclosures of f(x) = −
∑5
k=1 kx sin(

k(x−3)
3 ).

models [3], or polynomial optimization [12]. The full list of im-
plemented solvers can be found in the package documentation1.

2.1 The enclose API
The RangeEnclosures API works through the function enclose.
The basic usage is via enclose(f, D, solver; kwargs...),
where f is the function whose range we want to bound, D is the
domain over which we want to compute the range, solver is the
solver used to compute the range (if no solver is specified, the pack-
age will default to the NaturalEnclosure solver), and kwargs are
possible keyword arguments used by the solver.
In RangeEnclosures, the solver is an instance of a struct that
must be a subtype of AbstractEnclosureAlgorithm. If a user
wants to add a new solver, they just have to add a new struct, say,
MyEnclosure and extend the method enclose, as the following
code snippet demonstrates.� �
import RangeEnclosures : enclose
using IntervalArithmetic : Interval
function enclose (f:: Function ,

D:: Union { Interval , IntervalBox },
solver :: MyEnclosure ; kwargs ...)

# solver - specific implementation
end� �
Note that D can be of type Interval for univariate (n = 1) func-
tions or of type IntervalBox for multivariate (n > 1) functions.

1https://juliareach.github.io/RangeEnclosures.jl/
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2.2 How to use the package
Below we show Julia code to specify the motivating example from
above as well as to compute a range enclosure. Here we use the
solvers NaturalEnclosure and BranchAndBoundEnclosure.� �
julia > f(x) = - sum (k*x* sin (k*(x-3)/3) for k in 1:5);
julia > D = - 10 . .1 0;
julia > enclose (f, D, NaturalEnclosure ())
[- 150 , 150 ]
julia > enclose (f, D, BranchAndBoundEnclosure ())
[- 56 .4 232 , 34 .9 988 ]� �
Combining different solvers. Sometimes there is no “best”
solver, as one solver might give a tighter estimate of the range’s
upper bound and another solver might give a tighter estimate of the
lower bound. In this case, the results can be combined. Consider the
function g(x) = x2− 2x+1 over the domain Dg = [0, 4]. We use
the solvers NaturalEnclosure and the MeanValueEnclosure:� �
julia > g(x) = x�2 - 2*x + 1;
julia > Dg = 0. .4 ;
julia > enclose (g, Dg , NaturalEnclosure ())
[-7, 17 ]
julia > enclose (g, Dg , MeanValueEnclosure ())
[- 11 , 13 ]� �
A better enclosure could be obtained by taking the intersection of
the two results. This can be easily done in one command by passing
a vector of solvers to enclose:� �
julia > enclose (g, Dg , [ NaturalEnclosure (),

MeanValueEnclosure ()])
[-7, 13 ]� �
Using solvers based on external libraries. Some of the avail-
able solvers are implemented in external libraries. To keep the start-
up time of RangeEnclosures low, these libraries are not imported
by default. To use the corresponding solver, the library needs to
be manually loaded. For instance, the Moore-Skelboe algorithm is
available upon loading the package IntervalOptimisation.jl.� �
julia > import IntervalOptimisation
julia > enclose (g, Dg , MooreSkelboeEnclosure ())
[-0 .0 0191952 , 9 .0 0109 ]� �
Multivariate functions. The techniques generalize to multivari-
ate functions. Note that the domain becomes an IntervalBox (in-
stead of an Interval). For example, consider the bivariate func-
tion h(x1, x2) = sin(x1) − cos(x2) − sin(x1) cos(x1) over the
domain Dh = [−5, 5]× [−5, 5]. Fig. 2 visualizes the result.� �
julia > h(x) = sin (x[1]) - cos (x[2]) - sin (x[1]) *
cos (x[1]);
julia > Dh = IntervalBox (-5. .5 , -5. .5 );
julia > enclose (h, Dh , BranchAndBoundEnclosure ())
[-2 .7 1068 , 2 .7 1313 ]� �

Fig. 2. An enclosure of the bivariate function h.

3. Future Applications
We envision applying the package to the domain of reachability
analysis [1, 2]. RangeEnclosures currently only supports functions
with univariate range. To represent multivariate ranges as convex
and non-convex sets, we plan to use LazySets.jl [6].
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