
JustSayIt.jl: A Fresh Approach to Open Source Voice
Assistant Development

Samuel Omlin1

1Swiss National Supercomputing Centre (CSCS), ETH Zurich, Lugano, Switzerland

ABSTRACT
We present JustSayIt.jl, a software and high-level API for of-
fline, low latency and secure translation of human speech to com-
puter commands or text, leveraging the Vosk Speech Recognition
Toolkit. The API includes an unprecedented, highly generic exten-
sion to the Julia programming language, which allows to declare ar-
guments in standard function definitions to be obtainable by voice.
As a result, it empowers any programmer to quickly write new com-
mands that take arguments from human voice.

Keywords
Julia, Python, Voice Assistant, Speech-to-command, Speech-to-
text, Low Latency, Language extension, Voice function arguments

1. Introduction
Leading software companies have heavily invested in voice assis-
tant software since the dawn of the century. However, they natu-
rally prioritize use cases that directly or indirectly bring economic
profit. As a result, their developments cover, e.g., the needs of
the entertainment sector abundantly, but those of academia and
software development only poorly. There is particularly little sup-
port for Linux, whereas it is the preferred operating system for
many software developers and computational scientists. The open
source voice assistant project MyCroft fully supports Linux, but
provides little tools that appear helpful for productive work in
academia and software development; moreover, adding new skills
to MyCroft seems to be complex for average users and appears
to require considerable knowledge about the specificities of My-
Croft. JustSayIt.jl addresses these shortcomings by providing
a lightweight framework for easily extensible, offline, low latency,
highly accurate and secure speech to command or text translation
on Linux, MacOS and Windows.

2. JustSayIt API and software
JustSayIt’s high-level API allows to declare arguments in standard
Julia function definitions to be obtainable by voice, which consti-
tutes an unprecedented, highly generic extension to the Julia pro-
gramming language. For such functions, JustSayIt automatically
generates a wrapper method that takes care of the complexity of
retrieving the arguments from the speakers voice, including inter-
pretation and conversion of the voice arguments to potentially any
data type. JustSayIt commands are implemented with such voice ar-
gument functions and are triggered by a user definable mapping of
command names to functions. As a result, it empowers program-
mers without knowledge of speech recognition to quickly write

� �
1 using JustSayIt
2 using JustSayIt . API
3 using DefaultApplication
4 @enum Day today tomorrow
5

6 # 1) Define a custom weather forecast search function
7 @voiceargs day =>(valid_input_auto = true) function
8 weather (day :: Day)
9 DefaultApplication . open (

10 " https :// www . google . com / search ?q= weather +$ day ")
11 end
12

13 # 2) Define command name to function mapping ,
14 # calling the custom function .
15 commands = Dict (" help " => Help . help ,
16 " weather " => weather)
17

18 # 3) Start JustSayIt with the custom commands .
19 start (commands = commands)� �

Fig. 1. Definition and usage of custom weather forecast search function in
JustSayIt.

new commands that take their arguments from the speakers voice.
Fig. 1 shows an executable example of 1) a simple voice argument
function, which enables a quick weather forecast search by voice
(lines 7-11), 2) a definition of a command name to function map-
ping (lines 14-15), which uses the function defined above, and 3)
the launching of the JustSayIt software with the defined command
name to function mapping (line 18).
JustSayIt provides a lot of powerful functionality that does not re-
quire programming (Fig. 2); it enables mapping of command names

—to predefined functions as, e.g., for typing text with the keyboard
(line 7) or controlling the mouse (lines 8-12),

—to keyboard shortcuts (lines 13-16), and
—to sequences of functions or keyboard shortcuts (lines 17-20).

The predefined function for typing text (Fig. 2, line 7) enables the
dictation of full text, words, letters or digits. Each of the modes sup-
ports a set of keywords which can trigger some immediate action
or modify the handling of subsequent speech input. A particularity
of JustSayIt’s speech to text approach is its strategy for the recog-
nition of these keywords: the speech is analyzed in word groups
which are naturally delimited by longer silences; then, keywords
are only considered as such if their word group does not contain
anything else then keywords. This allows to determine whether a
word that is recognized as a keyword should trigger some action or
be typed instead.

1

The Proceedings of the JuliaCon Conferences 6(66), 2024

� �
1 using JustSayIt
2

3 # 1) Define mapping of command names to functions ,
4 # keyboard shortcuts and command sequences .
5 commands = Dict (
6 " help " => Help . help ,
7 " type " => Keyboard . type ,
8 " ma " => Mouse . click_left ,
9 " middle " => Mouse . click_middle ,

10 " right " => Mouse . click_right ,
11 " hold " => Mouse . press_left ,
12 " release " => Mouse . release_left ,
13 " undo " => (Key . ctrl , 'z '),
14 " redo " => (Key . ctrl , Key . shift , 'z '),
15 " page up " => Key . page_up ,
16 " page down " => Key . page_down ,
17 " take " => [Mouse . click_double ,
18 (Key . ctrl , 'c ')],
19 " replace " => [Mouse . click_double ,
20 (Key . ctrl , 'v ')]
21)
22

23 # 2) Start JustSayIt , activating max speed
24 # recognition for a subset of the commands .
25 start (commands = commands ,
26 type_languages =["en - us ", " fr "],
27 max_speed_subset =[" ma ", " middle ", " right ",
28 " hold ", " release ", " page up ", " page down ",
29 " take "])� �

Fig. 2. Usage of some of JustSayIt’s powerful functionalities that do not
require programming: making use of predefined functions, keyboard short-
cuts and command sequences.

JustSayIt is designed for full multi-language speech-to-command
and speech-to-text support for the over twenty languages available
with the Vosk Speech Recognition Toolkit1 [7]. Languages are se-
lectable with keyword arguments (e.g., Fig. 2, line 26).

3. Speech recognition algorithm
JustSayIt implements a novel algorithm for high performance con-
text dependent recognition of spoken commands which leverages
the Vosk Speech Recognition Toolkit [7] (which in turn relies on
the Kaldi speech recognition toolkit [6]). A specialized high per-
formance recognizer is defined for each function argument that is
obtainable by voice and has a restriction on the valid input. In ad-
dition, when beneficial for recognition accuracy, the recognizer for
a voice argument is generated dynamically depending on the com-
mand path taken before the argument. To enable minimal latency
for single word commands (latency refers here to the time elapsed
between a command is spoken and executed), the latter can be trig-
gered when appropriate upon bare recognition of the corresponding
sounds without waiting for silence as normally done for the confir-
mation of recognitions (this behaviour can be activated for each
command individually, see Fig. 2, lines 26-28). Thus, JustSayIt is
suitable for commands where a perceivable latency would be un-
acceptable, as, e.g., mouse clicks. For example, for the single word
command "ma" (mapped to the left mouse button) latencies be-
tween 5 ms and 24 ms with a median of 6 ms were measured on
a regular notebook2. JustSayIt achieves this low latency using only

1supported as of today: English, French, German (partial) and Spanish (par-
tial)
2100 samples were taken on a Lenovo ThinkPad P15 Gen 1 notebook with
a 12-core Intel i7-10750H CPU @ 2.60GHz and 64 GB DDR4 memory.

one CPU core and can therefore run continuously without harming
the computer usage experience.

4. Python integration
JustSayIt makes best use of both Julia and Python rather than
limiting itself to one language: it leverages Julia’s performance
and metaprogramming capabilities3 and Python’s larger ecosys-
tem where no Julia package is considered suitable. The Vosk
Speech Recognition Toolkit, a C++ library, is used via its conve-
nient Python bindings, available as the Python module vosk. Just-
SayIt relies on PyCall.jl [4] and Conda.jl [1] for a straightfor-
ward integration of Python modules as, e.g., vosk, pynput [5] and
sounddevice [2]. All Python dependencies are fully automatically
installed into an isolated Python environment.

5. Conclusions
The JustSayIt API’s possibility to declare arguments in standard
Julia function definitions to be obtainable by voice constitutes an
unprecedented, highly generic extension to the Julia programming
language. Moreover, it allows JustSayIt to combine accuracy, per-
formance and security with extensibility of particular ease and gen-
erality. The great and effortless extensibility and the possibility for
straightforward integration of Python modules into JustSayIt pro-
vide an ideal basis to unite the world-wide Julia and Python com-
munities in the development of this open source project. The Just-
SayIt project demonstrates that the development of our future voice
assistants can take a fresh and new path that is neither driven by the
priorities and economic interests of global software companies nor
by a small open source community of speech recognition experts;
instead, the entire world-wide open source community is empow-
ered to contribute in shaping our future daily assistants.

6. References
[1] Guillaume Fraux. Conda.jl: Conda managing Julia binary

dependencies. https://github.com/JuliaPy/Conda.jl,
2015.

[2] Matthias Geier. sounddevice: Play and Record Sound
with Python. https://github.com/spatialaudio/
python-sounddevice, 2015.

[3] Mike Innes, Julia Computing, and contributors. MacroTools.jl:
a library of tools for working with Julia code and expressions.
https://github.com/FluxML/MacroTools.jl, 2015.

[4] Steven G Johnson and contributors. PyCall.jl: Package to call
Python functions from the Julia language. https://github.
com/JuliaPy/PyCall.jl, 2022.

[5] Moses Palmer. pynput. https://github.com/
spatialaudio/python-sounddevice, 2015.

[6] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg
Stemmer, and Karel Vesely. The kaldi speech recognition
toolkit. In IEEE 2011 workshop on automatic speech recogni-
tion and understanding. IEEE Signal Processing Society, 2011.
IEEE Catalog No.: CFP11SRW-USB.

[7] Nickolay V. Shmyrev and other contributors. Vosk Speech
Recognition Toolkit: Offline speech recognition API for An-
droid, iOS, Raspberry Pi and servers with Python, Java, C# and
Node. https://github.com/alphacep/vosk-api, 2020.

3using MacroTools.jl [3] where helpful

2

https://github.com/JuliaPy/Conda.jl
https://github.com/spatialaudio/python-sounddevice
https://github.com/spatialaudio/python-sounddevice
https://github.com/FluxML/MacroTools.jl
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaPy/PyCall.jl
https://github.com/spatialaudio/python-sounddevice
https://github.com/spatialaudio/python-sounddevice
https://github.com/alphacep/vosk-api

	Introduction
	JustSayIt API and software
	Speech recognition algorithm
	Python integration
	Conclusions
	References

