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ABSTRACT

We present a Julia package, DisjunctiveProgramming. j1, that
extends the functionality in JuMP. j1 to allow modeling problems
via logical propositions and disjunctive constraints. Such models
can then be reformulated into Mixed-Integer Programs (MIPs) that
can be solved with the various MIP solvers supported by JuMP.
To do so, logical propositions are converted to Conjunctive Normal
Form (CNF) and reformulated into equivalent algebraic constraints.
Disjunctions are reformulated into mixed-integer constraints via
the reformulation technique specified by the user (Big-M or Hull
reformulations). The package supports reformulations for disjunc-
tions containing linear, quadratic, and nonlinear constraints.
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1. Introduction

The modeling of systems with discrete and continuous decisions
is commonly done in algebraic form with mixed-integer program-
ming (MIP) models. When the problems can be defined by purely
linear constraints and a linear objective function, they are referred
to as mixed-integer linear programs (MILP). When nonlinearities
arrise in either the feasible space or the objective function, they are
called mixed-integer nonlinear programs (MINLP).

A more systematic approach to modeling such systems is to use
Generalized Disjunctive Programming (GDP) [6, [15], which gen-
eralizes the Disjunctive Programming paradigm proposed by Balas
[3]. GDP enables the modeling of systems from a logic-based level
of abstraction that captures the fundamental rules governing such
systems via algebraic constraints and logic. This formulation is use-
ful for expressing problems in an intuitive way that relies on their
logical underpinnings without needing to introduce mixed-integer
constraints. GDP models are often easier to understand as related
constraints are grouped into disjuncts that describe clearly defined
subsets of the feasible space. The models obtained via GDP can
be reformulated into the pure algebraic form best suited for the
application of interest. It is also often possible to exploit the ex-
plicit logical structure of a GDP model to provide tighter relax-
ations than corresponding MIP models, which may improve con-
vergence speed and robustness for solutions via advanced solution
algorithms [6].

Within the optimization community, there is a high volume of on-
going research that relies on GDP to formulate models for a variety
of applications. Due to the combinatorial nature of system design
problems, the GDP paradigm has been applied to the synthesis of

complex processes and networks [211 [27], the planning and opti-
mal control of energy systems [9]], and the modeling of chemical
synthesis under uncertainty [8]. These and numerous other appli-
cations of GDP illustrate the benefit of having a robust package for
GDP that removes much of the overhead associated with develop-
ing and testing GDP models. Although packages with GDP capa-
bilities exist for Pyomo [[7] and GAMS [26], having such a package
available in Julia can greatly accelerate research in optimization,
where packages like JuMP. j1 [10] are gaining significant traction.
This paper provides background on the GDP paradigm, and the
techniques for reformulating and solving such models. It then
presents the package DisjunctiveProgramming. j1 as an exten-
sion to JuMP. j1 for creating models for optimization that follow
the GDP modeling paradigm and can be solved using the vast list
of supported solvers [10]. A case study demonstrates the use of the
package for chemical process superstructure optimization.

2. Generalized Disjunctive Programming

The GDP form of modeling is an abstraction that uses both alge-
braic and logical constraints to capture the fundamental rules gov-
erning a system. The two main reformulation strategies to trans-
form GDP models into their equivalent MIP models are the Big-M
reformulation [23| 24] and the Hull reformulation [20]], the latter
of which yields tighter models at the expense of larger model sizes
[14].

2.1 Model
The general notation for a GDP problem is given below,
min f(z)
s.t.g(z) <0
Yik
\/ |:hzk(m) < 0} ke K
i€Jy
QYY) = true
Yir € {true, false} Vie Jy, ke K
re X CR"

Here f(z) is the objective function to be minimized over the con-
tinuous variable x, g(x) represents the global constraints, h(x)
represents the disjunct-specific constraints, and Y is the Boolean
variable governing each disjunction. In this notation, there are k
disjunctions with ¢ disjuncts in each. Constraints h;;(x) < 0, are
applied only if the Boolean indicator variable for the respective dis-
junct, Y;g, is denoted as being active (i.e., true) [6]. The set of log-
ical constraints, Q(Y"), describe the logical relationships between
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Fig. 1. Feasible solution space for example disjunction

the selections of indicator variables. These can take the form of
logical propositions or constraint programming expressions.

In the case of a linear objective function and constraint set, the GDP
model can be written as,

min ¢’z
s.t. Az < b

Y;
\/ |:Bik$ < dik:| , VReK
ie€Jy
QYY) = true
Yir € {true, false} Vie Jy, ke K

2.2 Solution Technique: Reformulation to
Mixed-Integer Program

The simplest example of a linear GDP system is given below, where
Y, is a Boolean indicator variable that enforces the constraints in
the disjunct (Az < bor Cz < d) when true,

vi 1,[ %
Az <b Cx<d

0<z<U
YiVY,
Y1,Ys € {true, false}

For visualization purposes and without loss of generality, the sim-
ple linear example is used to illustrate the Big-M and Hull refor-
mulations. Figure [T]illustrates the feasible space of a simple linear
GDP with one disjunction and two continuous variables, x; and x5.
The rectangle on the left is described by the constraints in the left
disjunct, Az < b. The rectangle on the right is defined by the con-
straints in the right disjunct, Cx < d. The non-overlapping nature
of the two regions is supported by the exclusive-OR relationship
above.

2.2.1 Big-M Reformulation. The Big-M reformulation for this
problem is given below, where M is a sufficiently large scalar that
makes the particular constraint redundant when its indicator vari-
able is not selected (i.e., y; = 0). Note that the Boolean variables,
Y, are replaced by binary variables, y;. When the integrality con-
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Fig. 2. Relaxed solution space using Big-M Reformulation

straint y1,y2 € {0,1} is relaxed to 0 < z1,z2 < 1, the resulting
feasible region can be visualized by projecting the relaxed model
onto the x1, x5 plane. This results in the region encapsulated by the
dashed line in Figure[2] It should be noted that the relaxed feasible
region is not as tight as possible around the original feasible solu-
tion space. The choice of the large M value determines the tight-
ness of this relaxation, and the minimal value of M for the optimal
relaxation can be found through interval arithmetic when the model
is linear. For nonlinear models, the tightest M can be obtained by
solving the maximization problem {maxh;(z) : z € X}. An
alternate method for tight Big-M relaxations is given in [24].

Az <b+ M- -(1—y)
Czx<d+ M- (1-ys)
y1ty2=1
0<xz<U
Y1,y2 € {0,1}

2.2.2  Hull Reformulation. The Hull reformulation is given be-
low. This formulation requires lifting the model to a higher-
dimensional space. When projected to the original space, the con-
tinuous relaxation of the model is tighter than its Big-M equivalent
[L5]. The reformulation relaxation can be visualized by the region
encapsulated by the dashed line in Figure[3] Note that this reformu-
lation provides a tighter relaxation than the Big-M reformulation in
Figure 2] Also note that describing the geometry of this relaxation
is more complex than the Big-M relaxation, which is made possible
by the increased number of constraints and variables in the model.

Az < by,

Cxy < dys

T =1+ To

yity2=1

0<x<U

0<z; <Uy; Vie{l,2}
y1,92 € {0,1}



Proceedings of JuliaCon

HEEl Feasible Solution Space
EEE Relaxed Solution Space

"’
-
——

X2

X1

Fig. 3. Relaxed solution space using Hull Reformulation

2.3 Logic constraint reformulation

2.3.1 Propositional Logic. The logic propositions within the set
of decision selection relationships, 2, must be converted into con-
junctive normal form (CNF) to enable reformulating a GDP model
as a MIP model. This means that each clause within the set of
propositions must be formulated into a conjunction of disjunctions.
This process can be accomplished by following the simplifying
rules of propositional logic (De Morgan’s laws). For boolean vari-
ables A, B, and C the following rules are used for converting to
CNF (in the order given below),

A+ Bisreplaced by (A — B) A (B — A)
A — Bisreplaced by ~AV B
—(AV B) is replaced by “A A =B
—(A A B) is replaced by AV - B
(AN B)V Cisreplaced by (AVC)A (BVC)

Once the logic propositions are converted to CNF, each clause can
be converted into an algebraic constraint with the following equiv-
alence, where the set I represents the subset boolean variables
present in the clause, and the set J represents the subset of boolean
variables present in the clause in negated form,

(\/n> v (\/ ﬂ@) becomes » " y; +» (1 —y;) > 1

el JgeJ el jed

Alternate approaches exist for converting propositional logic state-
ments into CNF, which involve preserving clause satisfiability
rather than clause equivalence. These approaches prevent exponen-
tial size increase in clauses and yield logically consistent results
[ 18]

2.3.2  Constraint Programming. Selection constraints analogous
to those used in Constraint Programming (CP) can also be included
in Q(Y). These constraints are of the form "allow exactly n ele-
ments in a list of Boolean variables to be true." This type of con-
straint overcomes the limitations of the Boolean exclusive-OR (V)
operator, which can only enforce that an odd number of elements
in a list of Booleans be true. Other CP-like constraints can be ob-
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tained by replacing "exactly" with "at most" or "at least". These
constraints are reformulated as follows,

exactly(n,Y) becomes n = Z Y;

(3

atleast(n,Y’) becomes n < Z Y;

atmost(n,Y) becomes n > Z Y;

K3

Exclusive-OR constraints as the one given in Eq. (??) are more
generally modeled as exactly(1,{Y1, Ya2}).

2.4 Other Solution Techniques

2.4.1 Disjunctive branch and bound. The disjunctive branch and
bound method closely mirrors the standard branch and bound ap-
proach for the solution of mixed-integer programming problems
[14]. A search tree is initialized by solving the continuous relax-
ation of the Big-M or Hull reformulation of the original GDP to
obtain a lower bound on the optimum. Branching is then done on
the disjunction with an indicator binary variable closest to 1. Two
nodes are created at this point: one where the respective indicator
Boolean variable is fixed to true (the disjunct is enforced) and an-
other where it is fixed to false (the disjunct is removed from the
disjunction). Each node is reformulated and solved to obtain a can-
didate lower bound. If the solution to a node results in a feasible
solution that satisfies all integrality constraints, the solution is an
upper bound on the optimum. Any non-integral solutions that ex-
ceed an upper bound are pruned from the search tree. The process
is repeated until the lower and upper bounds are within the desired
tolerance.

2.4.2 Logic-based outer approximation. Logic-based outer ap-
proximation is another algorithm which mirrors a standard tech-
nique for solving mixed-integer nonlinear programming prob-
lems [11]. This approach starts by identifying a set of reduced
Non-Linear Programming (NLP) sub-problems obtained by fix-
ing Boolean variables in the different disjunctions such that each
disjunct is selected at least once across the set of sub-problems
(set covering step). Each sub-problem is solved to obtain an up-
per bound and a feasible point, about which the objective and con-
straints of the original GDP are linearized, and solve the resulting
problem (via direct reformulation to MILP or via disjunctive branch
and bound) to find a lower bound. If the lower and upper bound so-
lutions have not converged, the Boolean variables from the previous
solution are fixed and the resulting NLP is solved to find a poten-
tially tighter upper bound solution. The procedure is repeated until
convergence is obtained.

2.4.3 Hybrid cutting planes. The cutting planes method is an al-
gorithm for tightening the relaxed solution space of a problem re-
formulated with Big-M before solving it by adding additional con-
straints which remove parts of the relaxed space that are disjoint
from the actual feasible solution space. These "cuts" to the relaxed
solution space are derived from the tighter, hull relaxation of the
problem. This algorithm provides a middle-ground for the tradeoff
between the complexity and corresponding computational expense
of the Hull reformulation with the less tight Big-M reformulation.
[25]].
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Fig. 4. [Tllustrative superstructure optimization problem

3. DisjunctiveProgramming.jl

The following section describes the features of the
DisjunctiveProgramming.jl package and illustrates its
syntax with an example from the chemical processing industry for
superstructure optimization. The use of nested disjunctions is also
shown.

3.1 Features

DisjunctiveProgramming. j1 allows for defining JuMP models
with disjunctions that are directly reformulated via Big-M or Hull
methods via the @disjunction macro or add_disjunction!
function. Big-M values can be specified either for the entire dis-
junction, for each disjunct, or for each constraint in each disjunct.
Alternately, if the constraints are linear, the code can use the vari-
able bounds to perform interval arithmetic on each constraint to
determine the tightest possible M value to use [2]. For nonlin-
ear GDP constraints, the epsilon approximation formulation for the
perspective function in the Hull reformulation is used [12]]. Users
can specify an epsilon tolerance value to use. Perspective functions
are generated by relying on manipulation of symbolic expressions
via Symbolics. j1 [13].

Logical propositions can be added to JuMP models using expres-
sions involving the disjunction indicator variables and the stan-
dard Boolean operators (<, =, V, /A, and —) in an @proposition
macro. These are automatically converted into CNF and added as
integer algebraic constraints to the model. The constraint program-
ming constraints can also be added using the choose! function.
The expressions are also automatically reformulated into integer
algebraic constraints.

Nesting of disjunctions is also supported.

3.2 Example

To illustrate the syntax in DisjunctiveProgramming.jl (Ver-
sion 0.4.1), consider the simple superstructure optimization prob-
lem for the chemical process given in Figure [] In this problem
a chemical plant with two candidate reactor technologies (R, and
R>) must be designed. If the second reactor technology is chosen, a
separation system must also be installed, for which two separation
technologies (S; and S3) are available. The GDP model seeks to
maximize the final product flow (F%), while discounting for reac-
tor and separator installation costs (C'r and C'g, respectively), sub-
ject to the nested disjunction and the global mass balances on the
stream flows Fj. The system variables are the flows on each stream
i (F};) and the installation costs, with their respective bounds given
in problem formulation. The fixed cost and process yield parame-
ters are given by v and 3, respectively.
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S| tion 1
ep‘z‘; ;0“ Flow 7 (F7)3»
Flow 5 (F5)
Separation 2
(S2)
max F; — Cr — Cg
s.t.
_ v -
Yr1 Reo
Fs = ﬁRlFZ Fg=0
?3 - 8 Fy = Brals
F4 B 0 v Cr ="r2
C i;_ Ybl Y%Q
s F5=fs1Fy| V | F5 = fsaFs
Cs =vs1 Cs = 752
Fy =Fy, + I3
F7 = F5 + FG

0<F, <10 Vie{l,..,7}
0<Cs < Cger

The above system can be modeled and reformulated via the Big-M
reformulation using DisjunctiveProgramming. j1. The result-
ing JuMP model is then optimized using the HiIGHS open-source
MILP solver [17] as shown below.

(1) Create the JuMP model and define the model variables and
global constraints (mass balances).

using DisjunctiveProgramming, HiGHS

# create model

m = GDPModel (HiGHS .Optimizer)

# add variables to model

@variable(m, 0 <= F[i = 1:7] <= 10)
@variable(m, 0 <= CS <= CSmax)
@variable(m, CRmin <= CR <= CRmax)

# add logical variables to model
@variable (m, YR[1:2], LogicalVariable)
O@variable (m, YS[1:2], LogicalVariable)

# add global constraints to model
@constraints (m,

begin
F[1] == F[2] + F[3]
F[7] == F[5] + F[6]
end

(2) Define the inner (nested) disjunction for the separation tech-
nologies in the superstructure using the @dis junction macro.



Proceedings of JuliaCon

# define constraints in left YS disjunct
YS1_disjunct = DisjunctConstraint (YS[1])
@constraint (m, F[5] ==

BL:S811*F[4], YS1_disjunct)

@constraint (m, CS == ~[:S81], YS1_disjunct)
# define constraints in right YS disjunct
YS2_disjunct = DisjunctConstraint (YS[2])

@constraint (m, F[5] ==

BL:521*F[4], YS2_disjunct)

@constraint (m, CS == ~[:82], YS2_disjunct)

# define disjunction (specify parent disjunct)
@disjunction(m, YS, YS2_disjunct)

(3) Define the outer disjunctions for the reaction pathway selec-
tion.

# define constraints in left YR disjunct
YR1_disjunct = DisjunctConstraint (YR[1])
@constraint (m, F[6] ==

BL:R11*F[2], YR1_disjunct)
@constraint(m, [i = 3:5], F[i] ==

0, YR1_disjunct)

@constraint (m, CR == ~[:R1], YR1_disjunct)
@constraint (m, CS == 0, YR1_disjunct)

# define constraints in right YR disjunct
YR2_disjunct = DisjunctConstraint (YR[2])

@constraint (m, F[6] ==

BL:R21*F[3], YR2_disjunct)

@constraint (m, CR == [:R2], YR2_disjunct)
# define disjunction

@disjunction(m, YR)

(4) Add the selection logical constraints using the choose! func-
tion. The first constraint enforces that only one reactor is se-
lected (i.e., Yr, V Yg,). The second constraint enforces that
the separation system be defined only if the second reactor
(Ry) is selected. This constraint is equivalent to the proposi-
tion Yr, & Yg, VYg,.

Q@constraint (m, YR in Exactly (1))
Q@constraint (m, YS in Exactly (YR[21))

(5) Add the objective function and optimize.

@objective (m, Max, F[7] - CS - CR)
optimize! (m)

4. Future Work

Since the package is currently limited to reformulating GDP mod-
els into Mixed-Integer Programming JuMP models, future work
includes developing logic-based solvers to allow optimizing GDP
models directly. This will include GDP solvers that implement the
other solution techniques described in Section[2.4} Future work also
involves extending the list of suported reformulation techniques to
include the P-Split [19] and True-False [1] reformulations.

5. Related Work

The popular Python package Pyomo [l [16] is widely used for op-
timization development and includes an extension for generalized
disjunctive programming [7]. GAMS [4] is a widely used optimiza-
tion modeling language with support for GDP under the GAMS EMP
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solver that uses LogMIP [26]. Research is also being conducted to
integrate modern process simulation technology, such as Aspen,
within the GDP paradigm [22].

6. Conclusion

DisjunctiveProgramming. j1 is an extension to JuMP for creat-
ing models for optimization that are formulated according to the
generalized disjunctive programming paradigm. The package pro-
vides several options for reformulations including the Big-M and
Hull relaxations. This package can be used to model problems,
reformulate them, and optimize them using existing mathematical
programming infrastructure in JuMP. This can be useful for indus-
trial and academic applications of GDP, such as superstructure op-
timization. The capabilities of this package allow for this model-
ing paradigm to be exploited using Julia’s efficient dynamically-
typed systems for rapid development, building, and testing of opti-
mization models.
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