
Catwalk.jl: An adaptive dispatch optimizer
Krisztián Schäffer1

1independent researcher

ABSTRACT
Catwalk.jl is a JIT compiler implemented as a Julia library
that generates optimized dispatch code based on statistical pro-
filing. Unlike typical JIT compilers it requires some integration
work from its users, allowing it to completely eliminate the need
of complex deoptimization logic. It is able to compile new type-
stabilized routes or reorder existing ones if the distribution of dis-
patched types changes during runtime and the customizable cost
model predicts significant speedup compared to the best version
that was previously compiled.
Catwalk.jl was designed for situations when both composabil-
ity and runtime polymorphism is required, and some runtime com-
pilation overhead is acceptable for speeding up dynamic dispatch
in hot loops.

Proceedings of JuliaCon

Keywords
Julia, JIT, Dynamic Dispatch, Adaptive Optimization, Profiler

1. Introduction
Although in most cases we can eliminate runtime dispatch in Julia
by using generics or staging, when not, it incurs significant over-
head compared to single dispatched virtual method calls of other
languages. Thus, polymorphic behavior in hot loops is problematic
in Julia [5].
The Julia compiler implements an optimization called "union split-
ting" [1] which can generate fast routes for up to five concrete types.
Packages also exist to alleviate the issue, but they are either re-
stricted to collections [6] [4] or affect composability [2]. None of
the existing solutions can use runtime information.
Catwalk.jl [3] uses a technique I call "iterated staging" to include
all encountered types in the optimization, while interacting with
the Julia compiler using only standard metaprogramming facilities:
macros, @generated functions and generics.

2. Integration: Iterated staging
The user has to shape their hot loop to work in batches if they did
not do it already e.g. for reporting. Batch size is typically between
100 and 1_000_000 iterations.
The user has to manually drive the optimization process, like:� �
optimizer = Catwalk.JIT()
for batch_num in 1:BATCH_COUNT

Catwalk.step!(optimizer)
single_batch(batch_num, Catwalk.ctx(optimizer))

end� �

single_batch or its downstream function that contains the dy-
namically dispatched call site must also be marked with the @jit
macro that turns it into a generated function.

3. Compilation
This structure allows Catwalk.jl to recompile between batches
if needed. The type of the "JIT context" returned by the
Catwalk.ctx() call determines the code to be generated. The call
f(a, unstable, b) will be rewritten to:� �
if unstable isa FIXTYPE1

f(a, unstable, b) # Type-stabilized route
elseif unstable isa FIXTYPE2

f(a, unstable, b) # Type-stabilized route
...
else

f(a, unstable, b) # Fallback to dynamic dispatch
end� �
4. Optimization
Randomly selected batches get instrumented with profiling code,
collecting the frequencies of dispatched types.
After profiled batches the optimizer generates the list of most fre-
quent types, and estimates the cost of dispatch for the collected pro-
file not only for this ideal list, but also for every previously com-
piled one. Then it finds the best previous compilation, and either
activates it or decides to compile code from the ideal list if the cost
simulation suggests significant speedup.
Every aspect of the optimization process is configurable and ex-
tendable, including the maximal number of stabilized types, the
cost model, the profiler and the optimizer.

5. Conclusion and further work
Thanks to the "Just Ahead Of Time" compilation model of Julia,
Catwalk.jl can adaptively generate highly optimal dispatch code,
while working completely in "user space".
Compilation cost is effectively minimized by manual impact point
selection and backtesting peviously compiled versions against
newly collected profiles using a cost model of dispatch.
Catwalk.jl speeds up dynamic dispatch by a factor typically be-
tween 5 and 200. Total experienced speedup exceeds 30% in some
real-life programs.
In the future I plan to improve compilation overhead by using
more efficient type-encoding; automatically determine the maxi-
mal length of the fixtype list by calculating marginal returns; and
experimenting with decision trees based on type hashes.

1



Proceedings of JuliaCon 1(1), 2021

6. References
[1] Tim Holy. Union-splitting: what it is, and why

you should care. The Julia Language Blog, 2018.
https://julialang.org/blog/2018/08/union-splitting/.

[2] jlapeyre@github John Lapeyre. Singledispatcharrays.jl.
Github, 2020. https://github.com/jlapeyre/ManualDispatch.jl.

[3] tisztamo@github Krisztián Schäffer. Catwalk.jl. Github, 2020.
https://github.com/tisztamo/Catwalk.jl.

[4] melonedo@github. Singledispatcharrays.jl. Github, 2021.
https://github.com/melonedo/SingleDispatchArrays.jl.

[5] Ronneesley Moura Teles. Performance draw-
back with subtyping. discourse.julialang.org, 2020.
https://discourse.julialang.org/t/performance-drawback-
with-subtyping/51939.

[6] tkoolen@github Twan Koolen. Type-
sortedcollections.jl. Github, 2017.
https://github.com/tkoolen/TypeSortedCollections.jl.

2


	Introduction
	Integration: Iterated staging
	Compilation
	Optimization
	Conclusion and further work
	References

