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ABSTRACT
Arithmetic operations defined in Julia do not modify their argu-
ments. However, in many situations, a variable represents an ac-
cumulator that can be modified in-place to contain the result, e.g.,
when summing the elements of an array. Moreover, for types that
support mutation, mutating the value may have a significant perfor-
mance benefit over creating a new instance. This paper presents an
interface that allows algorithms to exploit mutability in arithmetic
operations in a generic manner.
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1. Introduction
Julia enables developers to write generic algorithms that work with
arbitrary number types, as long as the types implement the needed
operations such as +, *, -, zero, one, ... The implementations of these
arithmetic operations in Julia do not modify their arguments. In-
stead, they return a new instance of the type as the result. However,
in many situations, a variable represents an accumulator that can
be mutated1 to the result, e.g., when summing the elements of an
array of BigInt or when implementing array multiplication. More-
over, for types that support mutation, mutating the value may have
a significant performance benefit over creating a new instance. Ex-
amples of types that implement arithmetic operations and support
mutation include Arrays, multiple-precision numbers, JuMP [3] ex-
pressions, MathOptInterface (MOI) [7] functions, and polynomials
(univariate [8] or multivariate [6]).
This paper introduces an interface called MutableArithmetics. It
allows mutable types to implement an arithmetic exploiting their
mutability, and for algorithms to exploit their mutability while re-
maining completely generic. Moreover, it provides the following
additional features:

(1) MutableArithmetics re-implements part of the Julia standard
library on top of the API to allow mutable types to use a more
efficient version than the default one.

(2) MutableArithmetics defines a @rewrite macro that rewrites an
expression using the standard operations (e.g., +, *, ...) into an
expression that exploits the mutability of the intermediate val-
ues created when evaluating the expression.

JuMP [3] used to have its own API for mutable operations on JuMP
expressions and its own JuMP-specific implementation of (1) and

1In this paper, the terminology “mutate x to y” means modifying x in-place
in such a way that its value after the modification is equal to y.

(2). These two features are one of the key reasons why JuMP is
competitive in performance with commercial algebraic modeling
languages [3, Section 3–4]. These features were refactored into
MutableArithmetics, generalizing them to arbitrary mutable types.
Starting from JuMP v0.21, JuMP expressions and MOI functions
implement the MutableArithmetics API, and the JuMP-specific im-
plementations of (1) and (2) were replaced by the generic versions
implemented in MutableArithmetics.

2. Design consideration
This section provides concrete examples that motivated the design
of MutableArithmetics. The section is organized into four sub-
sections that describe the need of four key features of Mutable-
Arithmetics’s API.

2.1 May mutate
Consider the task of summing the elements of a vector. By default,
Julia’s sum function will compute the sum with a method equivalent
to the following:� �

function sum(x::Vector)
acc = zero(eltype(x))
for el in x

acc = acc + el
end
return acc

end� �
If the type of the elements of x is BigInt, it is more
efficient to replace the line acc = acc + el by the line
Base.GMP.MPZ.add!(acc, el). Indeed, as the operation + cannot
modify its arguments, it will need to allocate a new instance of
BigInt to contain the result. On the other hand, Base.GMP.MPZ.add!
mutates1 acc to the result.
Even if using Base.GMP.MPZ.add! provides a significant performance
improvement, the time complexity order is identical: Θ(nm) in
both cases, where n is the number of elements and m is the number
of bits of an element.
We now consider a mutable element type for which exploit-
ing mutability affects the time complexity. Consider a type
SymbolicVariable representing a symbolic variable and the follow-
ing types representing linear combinations of these variables with
coefficients of type T. This example encapsulates for instance JuMP
affine expressions [3], MOI affine functions [7], polynomials (uni-
variate [8] or multivariate [6]) or symbolic sums [5].� �
struct Term{T}

coef::T
sym::SymbolicVariable

end
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struct Sum{T}
terms::Vector{Term{T}}

end
Base.:+(s::Sum, t::Term) = Sum(push!(copy(s.terms), t))
Base.zero(::Type{Term{T}}) where {T} = Sum(Term{T}[])� �

Calling sum on a vector of n Term{T} has a time complexity Θ(n2).
Indeed, when calling acc + el where acc contains the sum of the
first k terms and el is the (k + 1)th term, the result cannot mutate
acc.terms and the copy of acc.terms has time complexity Θ(k).
A possible mutable interface would be to define an add!! function
that is similar to + with the only difference being that it is allowed to
modify its first argument. By default, add!! would fall back to call-
ing + so that a method calling add!! would both exploit the muta-
bility of mutable types but would also work for non-mutable types.
For our example, an implementation could be:� �
function sum(x)

acc = zero(eltype(x))
for el in x

acc = add!!(acc, el)
end
return acc

end
add!!(a, b) = a + b # default fallback
add!!(a::BigInt, b::BigInt) = Base.GMP.MPZ.add!(a, b)
function add!!(s::Sum, t::Term)

push!(s.terms, t)
return s

end� �
Note that the time complexity of the sum of n Term is now Θ(n).
Julia implements a specialized method for computing the sum of
BigInts that uses Base.GMP.MPZ.add!. Similarly, before its version
v0.21, JuMP used to implement a specialized method for the sum of
JuMP expressions. The advantage of having a standardized API for
mutable addition is that only one implementation of sum is needed.
This approach of API based on a function that may mutate its first
argument in order to allow the same code to work both for muta-
ble and non-mutable type is used by the !! convention in Bang-
Bang [1], the mutable API in AbstractAlgebra [4], as well as the
destructive_add! function in JuMP v0.20.

2.2 Should mutate
In situations where the correctness of code depends on the muta-
tion of the first argument of an operation, an API that allows an
implementation to silently return the result without modifying the
first argument is not appropriate.
To motivate this, consider the Rational Julia type:� �
struct Rational{T}

num::T
den::T

end� �
Suppose we want to mutate1 some rational a::Rational to the prod-
uct of a::Rational and some other rational b::Rational (ignoring the
simplification with gcd for simplicity).
Using a.num = mul!!(a.num, b.num); a.den = mul!!(a.den, b.den)

(where mul!! follows BangBang’s convention) is not an option
since the Rational struct is not mutable.
For this reason, there are also mutable operations that should mu-
tate the first argument. This is the approach used by the ! conven-
tion in Julia as well as the add_to_expression! function in JuMP.

2.3 Mutability
A third useful feature for users of a mutable API is the ability to
determine whether objects of a given type can be mutated1 to the
result of a mutable operation. To motivate this, consider again the
multiplication of rational numbers introduced in the previous sec-
tion. An implementation mul!! (where mul!! may mutate its first
argument and mul! should mutate its first argument) for rational
numbers could be:� �
function mul!!(a::Rational{S}, b::Rational{T}) where {S,T}

if # `S` can be mutated to `*(::S, ::T)`
mul!(a.num, b.num)
mul!(a.den, b.den)
return a

else
return a * b

end
end� �

This third feature would be needed to implement this if clause.

2.4 Promotion
Algorithms that can exploit mutability often start by creating an
accumulator of an appropriate type.
Consider the following matrix-vector multiplication implementa-
tion where mul_to! mutates1 c to A * b.� �

function Base.:*(A::Matrix{S}, b::Vector{T}) where {S,T}
c = Vector{U}(undef, size(A, 1)) # What is U ?
return mul_to!(c, A, b)

end� �
What should be the element type U of the accumulator c ? For in-
stance, if S is Float64 and T is SymbolicVariable then U should be
Sum{Float64}. LinearAlgebra uses Base.promote_op for this which re-
lies on Julia’s inference to determine the type of the sum of products
of elements of type S and T.
In the summing example introduced in section 2.1, the type of the
accumulator should also be determined as the type of the sum of
elements of the vector. For the sum function, Julia uses zero as it is
defined as the additive identity element.

3. Implementing the interface
MutableArithmetics defines the following four functions that pro-
vides the features motivated in the corresponding four subsections
of the previous section.

(1) operate!!(op::Function, args...) (resp.
operate_to!!(output, op::Function, args...)) returns the
result of op(args...) and may mutate args[1] (resp. output).

(2) operate!(op::Function, args...) (resp.
operate_to!(output, op::Function, args...)) mutates1 args[1]

(resp. output) to the result of op(args...) and returns it.
(3) mutability(T::Type, op::Function, args::Type...) is a trait re-

turning IsMutable() if objects of type T can be mutated1 to
the result of op(::args[1], ::args[2], ...) and IsNotMutable()

otherwise.
(4) promote_operation(op::Function, args::Type...) returns the re-

turn type of op(::args...).

As we detailed in the previous section, this API covers many use
cases. The downside of such a varied API is that it seems to be
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a lot of work to implement it for a mutable type. We show in the
remainder of this section how the MutableArithmetics API remains
simple to implement nevertheless.

3.1 Promotion fallback
First, promote_operation can have a default fallback. For in-
stance, promote_operation(+, ::Type{S}, ::Type{T}) defaults to
typeof(zero(S) + zero(T)) which is correct if +(::S, ::T) is type-
stable.
There are two cases for which this default implementation of
promote_operation is not sufficient. First, as we will see below,
promote_operation is at the core of many operations, so it is im-
portant that it is efficient. Julia may be able to compute the re-
sult of typeof(zero(S) + zero(T)) at compile time. However, if the
body of promote_operation is not evaluated at compile-time, this can
cause performance issues. This is amplified for mutable types as
zero(S) + zero(T) may allocate. Second, if zero(S) + zero(T) ends
up calling promote_operation(+, S, T), this default implementation
will not terminate. In both of these cases, promote_operation should
have a specialized implementation, e.g., by hardcoding the result
for each pair of concrete types S and T.
Note that implementing promote_operation should be significantly
easier than implementing the actual operation where the actual
value of the result needs to be computed, not just its type. Hence
this should not constitute a burden for the implementation.

3.2 May mutate fallback
We have the following default implementations of operate!! and
operate_to!!.� �

function operate!!(op, args...)
T = typeof.(args)
if mutability(T[1], op, T...) isa IsMutable

return operate!(op, args...)
else

return op(args...)
end

end
function operate_to!!(output, op, args...)

O = typeof(output)
T = typeof.(args)
if mutability(O, op, T...) isa IsMutable

return operate_to!(output, op, args...)
else

return op(args...)
end

end� �
Note that this default implementation should have optimal per-
formance in case mutability is evaluated at compile-time and
the if statement is optimized out by the compiler. Indeed, sup-
pose that another implementation is faster than this default
one. If mutability(O, op, T...) is an instance of IsMutable (resp.
IsNotMutable) then this faster implementation can be reduced to a
faster implementation for operate_to!(output, op, args...) (resp.
op) so that the same performance is obtained with the default im-
plementation of operate_to!!.

3.3 Mutability fallback
It turns out that all types considered at the moment fall
into two categories. The first category is made of the types
T for which mutability(T, ...) always returns IsNotMutable().
These are typically the non-mutable types, e.g., Int, Float64,
Rational{Int}, ... In the second category are the types T for

which mutability(T, op, args...) returns IsMutable() if and only
if T == promote_operation(op, args...). Based on this observation,
we define mutability(T::Type) which returns IsMutable() if T is in
the first category and IsNotMutable() if T is in the second category.
Then we have the following fallback for mutability:� �
mutability(::Type) = IsNotMutable()
function mutability(T::Type, op::Function, args::Type...)

if mutability(T) isa IsMutable &&
T == promote_operation(op, args...)
return IsMutable()

else
return IsNotMutable()

end
end� �

3.4 Minimal interface
In summary, for a type Foo to implement the interface, the following
line should be implemented:� �

mutability(::Type{Foo}) = IsMutable()� �
as well as the following lines for each operation (we assume the
operation is + and the result type is Foo),� �

promote_operation(::typeof(+), ::Type{Foo}, ::Type{Foo}) =
Foo

function operate!(::typeof(+), a::Foo, b::Foo)
# ...
return a

end
function operate_to!(

output::Foo,
::typeof(+),
a::Foo,
b::Foo,

)
# ...
return output

end� �
Then

mutability(::Foo, +, Foo, Foo),
operate!!(+, ::Foo, ::Foo),
operate_to!!(::Foo, +, ::Foo, ::Foo),
add!!(::Foo, ::Foo) and
add_to!!(::Foo, ::Foo, ::Foo)

will be available as well for the user thanks to the default fallbacks.

4. Rewriting macro
As mentioned in the introduction, Mutable-
Arithmetics implements a @rewrite macro that rewrites:� �

@rewrite(a * b + c * d - e * f * g - sum(i * y[i] for i in 2
:n))� �

into� �
acc0 = Zero()
acc1 = add_mul!!(acc0, a, b)
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acc2 = add_mul!!(acc1, c, d)
acc3 = sub_mul!!(acc2, e, f, g)
for i in 2:n
acc3 = sub_mul!!(acc3, i, y[i])

end
acc3� �

where� �
add_mul(x, args...) = x + *(args...)
sub_mul(x, args...) = x - *(args...)� �

The code produced by the @rewrite macro does not assume that
any of the objects a, b, ... can be mutated. However, it exploits the
mutability of the intermediate expressions acc0, acc1, acc2 and acc3.
Note that different accumulator variables are used because the type
of the accumulator may change.

5. Benchmarks and buffers
In this section, we provide a benchmark and illustrate how Mutable-
Arithmetics allows to preallocate buffers needed by low-level op-
erations.

5.1 Matrix-vector product
Consider the product between a matrix and a vector of BigInts.
LinearAlgebra.mul! uses a generic implementation that does not ex-
ploit the mutability of BigInts. We can see in the following bench-
mark [2] that more than 3 MB are allocated.� �
n = 200
l = big(10)
A = rand(-l:l, n, n)
b = rand(-l:l, n)
c = zeros(BigInt, n)

using BenchmarkTools
import LinearAlgebra
@benchmark LinearAlgebra.mul!($c, $A, $b)

# output

Time (median): 5.900 ms
Time (mean): 12.286 ms
Memory: 3.66 MiB, allocs: 197732.� �

The generic implementation in MutableArithmetics exploits the
mutability of the elements of c. This provides a significant speedup
and a drastic reduction of memory usage:� �
@benchmark add_mul!!($c, $A, $b)

# output

Time (median): 1.001 ms
Time (mean): 1.021 ms
Memory: 48 bytes, allocs: 3.� �

In fact, it also exploits the mutability of the intermediate terms. If
the generic implementation was calling� �
operate!(add_mul, c[i], A[i, j], b[j])� �

it would allocate a BigInt to hold an intermediate value as in:

� �
tmp = A[i, j] * b[j]
operate!(+, c[i], tmp)� �

In order to avoid allocating n2 new BigInts, MutableArithmetics
enables operations to communicate the buffers they need to
allocate through the buffer_for function. The buffer can then
be reused between multiple occurrences of the same operation
with buffered_operate!. By default, buffer_for returns nothing and
buffered_operate! has the following fallback (where MA is a shortcut
for MutableArithmetics):� �

MA.buffered_operate!(::Nothing, args...) = operate!(args...)� �
The implementation of the following two methods in Mutable-
Arithmetics allows the buffer to be created and reused by a generic
method that is not specific to BigInt:� �

function MA.buffer_for(
::typeof(add_mul),
::Type{BigInt}...,

)
return BigInt()

end
function MA.buffered_operate!(

buffer::BigInt,
::typeof(add_mul),
a::BigInt,
x::BigInt,
y::BigInt,

)
operate_to!(buffer, *, x, y)
return operate!(+, a, buffer)

end� �
This is used by the implementation of matrix-vector multiplication
in MutableArithmetics to create the buffer once with� �

buf = buffer_for(add_mul, eltype(c), eltype(A), eltype(b))� �
and then reuse it with� �

buffered_operate!(buf, add_mul, c[i], A[i, j], b[j])� �
This explains why there are only 48 bytes allocated in the bench-
mark result above, which corresponds to the allocation of a single
BigInt().
In fact, a buffer needed for a low-level operation can even be com-
municated at the level of higher-level operations. This allows for
instance to allocate the buffer only once even if several matrix prod-
ucts are computed:� �

buf = buffer_for(
add_mul,
typeof(c),
typeof(A),
typeof(b),

)
@ballocated buffered_operate!($buf, add_mul, $c, $A, $b)

# output

0� �
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5.2 Mutability layers
Mutable states in objects can form a hierarchy of mutable layers.
It is paramount for a mutability API to allow the user to exploit
the mutability from the top layer to the bottom layer. Consider the
following example using Polynomials [8].� �
using Polynomials
m = 100
n = 10
p(d) = Polynomial(big.(1:d))
z(d) = Polynomial([zero(BigInt) for i in 1:d])
A = [p(d) for d in 1:m, _ in 1:n]
b = [p(d) for d in 1:n]
c = [z(2d - 1) for d in 1:m]� �

The arrays contain 3 layers of mutability: Array, Polynomial and
BigInt. As shown in the benchmark below, impact on performance
is amplified by the number of layers.� �
julia> @benchmark LinearAlgebra.mul!($c, $A, $b)
Time (median): 18.132 ms
Time (mean): 46.276 ms
Memory: 30.12 MiB, allocs: 1560450.

julia> @benchmark add_mul!!($c, $A, $b)
Time (median): 2.613 ms
Time (mean): 2.789 ms
Memory: 48 bytes, allocs: 3.

julia> buf = buffer_for(
add_mul, typeof(c), typeof(A), typeof(b))

0

julia> @ballocated buffered_operate!(
$buf, add_mul, $c, $A, $b)

0� �
As a matter of fact, one of the motivations for MutableArithmetics
was to improve the performance of SumOfSquares [9]. SumOf-
Squares is using multivariate polynomials with JuMP expressions
or MOI functions as coefficients. JuMP had an interface for ex-
ploiting the mutability of its expressions, but MultivariatePolyno-
mials was not exploiting it. MultivariatePolynomials now imple-
ments MutableArithmetics and also exploits the mutability of its
coefficients, whether they are BigInt, JuMP expressions, MOI func-
tions or any other types implementing MutableArithmetics.

6. Conclusion
MutableArithmetics provides an interface for mutable operations.
As detailed in this paper, the design of the interface provides both
an extensive set of features for the user without sacrificing the ease
of implementing the interface. Moreover, it provides a zero-cost
abstraction so that a single generic implementation can handle mu-
table and non-mutable inputs. As the same API is used for arrays,
functions, numbers, ... multi-layered mutability can be exploited
efficiently, and the intermediate allocations needed by inner layers
can be preallocated from the outside layers using a buffer API.
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