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ABSTRACT
Flux [17] is a machine learning framework, written using the nu-
merical computing language Julia[4]. The framework makes writ-
ing layers as simple as writing mathematical formulae, and it’s ad-
vanced AD, Zygote [11] , applies automatic differentiation (AD) to
calculate derivatives and train the model. It makes heavy use of Ju-
lia’s language and compiler features to carry out code analysis and
make optimisations. For example, Julia’s GPU compilation support
[3] can be used to JIT-compile custom GPU kernels for model lay-
ers [19]. Flux also supports a number of a hardware options, from
CPUs, GPUs and even TPUs via XLA.jl, that compiles Julia code
to XLA: an advanced compiler for linear algebra that is capable of
greatly optimizing speed and memory usage in large deep learning
models.
ONNX.jl is an Open Neural Network Exchange backend for the
Flux.jl deep learning framework. ONNX.jl supports directly im-
porting high quality ONNX standard models into Flux, thus saving
time and reducing the need for additional computation resources.
This paper aims at introducing ONNX.jl and explaining how it fits
into the bigger picture: How we can use the Julia Language, specif-
ically Flux.jl and ONNX.jl as a starting for high quality transfer
learning of large deep learning models.
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1. Introduction
The Julia language was introduced to solve the two language prob-
lem: In simple words, languages that are simple to write (high-
level) are very slow but those which are difficult to use (low-level)
are way faster. This is because most of the high-level languages
weren’t written to process a large amount of data. Thus engineers,
researchers and developers have a hard time developing a lot of
high performance languages. At the moment, the common proto-
col is to write the core of the software in a low-level language
(C/C++/Fortran) and wrap it in a high-level language (Python).
This results in optimized performance and ease of use. The Julia
language aims to make best of both worlds. It provides a high level
syntax but manages to perform as fast as C (sometimes even faster).
Flux.jl is a library for implementing machine learning models, writ-
ten completely in the Julia programming language. At the heart of
Flux.jl lies Zygote.jl: A source-to-source automatic differentiation
(AD) library that makes complete use of the Julia language com-
piler to generate backward pass during training phase of a neural

network, with complete support for control flow, recursion, clo-
sures and data structures. Implementing models in Flux.jl is as sim-
ple as writing regular Julia code. Implementing models is as simple
as writing the formulae for those, and Zygote.jl will compute the
derivatives seamlessly.
Flux.jl also provides support for other hardware options using ex-
ternal packages such as CuArrays.jl and CLArrays.jl. CuArrays
is written completely in Julia, making implementing GPU kernels
very simple. Making a model run on GPU can be done in a hassle-
free manner: It is as simple as calling a few functions to trans-
fer data to GPU. Flux.jl also has support for running models on
Google’s Tensor Processing Unit (TPU). TPUs help in very fast
linear algebra computation. Running Flux models on TPUs is pos-
sible through XLA.jl that compiles Julia code to XLA.
The FluxML ecosystem provides a number of supporting packages
that provide additional functionalities , some of them being (apart
from the aforementioned Flux.jl, Zygote.jl and XLA.jl);

—ONNX.jl : Open Neural Network eXchange backend for Flux.jl
—Metalhead.jl [12]: Simple plug and play pretrained Flux.jl com-

puter vision models.
—Torch.jl [7]: This package aims at exposing Torch.tensor types in

Julia.
—IRTools.jl [13] : Provides an IR format that is easy to manipulate.
—FluxJS.jl [18] : Runs Flux models in the browser, via tensor-

flow.js
—model-zoo [15]: Collection of implementation of various Flux

deep learning models.

2. Open Neural Network eXchange (ONNX)
Open Neural Network Exchange (ONNX) [2] is an open ecosys-
tem that empowers AI developers to choose the right tools as
their project evolves. ONNX provides an open source format for
AI models, both deep learning and traditional machine learning.
ONNX defines the computation graph for a deep learning model
along with various operators used in the model. It provides a set
of specifications to convert a model to a basic ONNX format, and
another set of specifications to get the model back from this ONNX
form. At a high level, ONNX is designed to allow framework inter-
operability. There are many excellent machine learning libraries in
various languages : PyTorch [2] , TensorFlow [1] , MXNet [5] ,
and Caffe [20] are just a few that have become very popular in
recent years, but there are many others as well. Machine learning
models can be converted to a serialized ONNX format which can
then be run on a number devices. ONNX Runtime is an inference
engine written in C++ framework used to deploy ONNX format
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models into production. It works on diverse hardware and support
both deep learning as well as traditional machine learning models.

2.1 Where does ONNX come in?
ONNX is a format for representing deep learning models, which
can be further run on numerous devices without worrying much
about the implementation. This helps researchers, developers and
engineer to focus on the problem in hand without worrying much
about the peripherals, such as the framework to use, the ability to
run a model trained using this particular framework on specialized
hardware. ONNX is is usable anywhere from small mobile devices
to large server farms, across chipsets and vendors, and with exten-
sive runtimes and tools support. ONNX reduces the friction of mov-
ing trained AI models among your favorite tools and frameworks
and platforms. A simple example of how ONNX is ideal for ML
is the case when large deep learning models need to be deployed.
Consider the simple case of deploying a Deep Learning model to
an iOS application. This particular model can be implemented in
any framework : TensorFlow, PyTorch, MXNet just to name a few.
However, iOS applications expect to use CoreML inside the appli-
cation. Up until now, developers have been porting large models
to different frameworks, which is a waste of time and energy, bet-
ter spent somewhere else. This is also retraining the entire model
from scratch, which isn’t efficient. This makes the entire process
cumbersome and impractical. ONNX exists to solve this very prob-
lem : By connecting the common dots from different frameworks,
ONNX makes it possible to express a model of type A to type B,
thus saving time and the need to train the model again.

3. ONNX backend in Julia
ONNX.jl is an ONNX backend written in Julia for the Flux.jl ma-
chine learning framework. It can be used for high-quality inference
of pretrained ONNX format machine learning models. At the heart
of it, ONNX.jl solves a compiler problem by dealing with inter-
mediate code representations to generate readable graphs. While
doing this, ONNX operators are mapped to corresponding Flux lay-
ers, thus tracing out the model’s computation graph at the end. This
graph can then be travelled to generate the Julia code for the model.
The first step towards reading any ONNX model in Julia is to have
access to all the data structures in the model, that essentially hold
all the required information to load the model. This information
includes everything that is used to completely define the model:
Hyper-parameters and parameters in the model. So in the case of a
simple Convolutional Neural Network, this may contain informa-
tion such as the number of layers, number of units in each layer,
strides, padding, kernel size, number of filters as hyper-parameters
and the trained values associated with each layer as parameters.
Since ONNX models as protobuf serialized, we need a way to read
this serialized data into specific data structures. ProtoBuf.jl is a
Julia implementation of protocol buffers that solves this very is-
sue (covered in section 3.1). It is used to read the ONNX model
into the generated Julia data structures. Once we have the entire
model present as a complex Julia structure, we need to read through
this structure and map ONNX operators to corresponding Flux lay-
ers/operations (covered in section 3.2). At the same time, model
weights or parameters are separately stored and saved externally as
BSON serialized file. Once the model has been loaded, we end up
with two files: ‘model.jl‘: The Julia code for the machine learning
model and ‘weights.bson‘: The weights associated with the layers
defined in the ‘model.jl‘ file (section 3.3). In the further sections
we’ll walk through the internals of these individual processes

3.1 ProtoBuf.jl
ProtoBuf.jl [26] is a Julia implementation of Protocol Buffers. It
provides a way to read and write data to and from Julia types from
I/O streams. What ProtoBuf.jl gives from onnx.proto3 is the Julian
definition of various data structures that in themselves have all the
required attributes to load any ONNX serialized model. As an ex-
ample, as simple message defined in onnx.proto3 as:� �
message NodeProto {

repeated string input = 1; // namespace Value
repeated string output = 2; // namespace Value

// An optional identifier for this node in a graph .
// This field MAY be absent in ths version of the
// IR .
string name = 3; // namespace Node

// The symbolic identifier of the Operator to
// execute .
string op_type = 4; // namespace Operator
string domain = 7; // namespace Domain

// Additional named attributes .
repeated AttributeProto attribute = 5;

string doc_string = 6;
}� �
(Code snippet taken from onnx/onnx.proto3)
Results in the corresponding Julia definition of the model as :� �
mutable struct NodeProto <: ProtoType

input :: Vector { AbstractString }
output :: Vector { AbstractString }
name :: AbstractString
op_type :: AbstractString
domain :: AbstractString
attribute :: Vector { AttributeProto }
doc_string :: AbstractString
NodeProto (; kwargs ...) =

(o= new (); fillunset (o); isempty ( kwargs ) ||
ProtoBuf . _protobuild (o, kwargs ); o)
end� �
Since ONNX tries to inherit properties from diverse frameworks,
ONNX serialized models can be large and complicated. While there
are a number of complex generated data structures, three of those
are essential towards understanding how data is stored internally:

—ModelProto: A very high-level struct that holds all the informa-
tion. ONNX models are read directly into this structure.

—GraphProto: This structure captures the entire computation graph
of the model.

—NodeProto and TensorProto: Information regarding individual
nodes in the graph (inputs, outputs and finer attributes) and
weights associated with the nodes.

3.2 ModelProto
ModelProto structure is the structure that holds all the information
needed to load a model. Internally, it holds data such as the version
information, model version, docstring, producer details and most
importantly: the computation graph.
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� �
mutable struct ModelProto <: ProtoType

ir_version :: Int64
opset_import :: Vector { OperatorSetIdProto }
producer_name :: AbstractString
producer_version :: AbstractString
domain :: AbstractString
model_version :: Int64
doc_string :: AbstractString
graph :: GraphProto
metadata_props :: Vector { StringStringEntryProto }

end # mutable struct ModelProto� �
An ONNX model, once read using ProtoBuf.jl is loaded into this
ModelProto object before extracting the graph details. Naturally, at
the heart of this is the graph::GraphProto attribute that stores the
computation graph of the model.

3.3 GraphProto
The GraphProto structure stores information about particular nodes
in the graph. This includes the node metadata, name, input, output
and the pre-trained parameters in the initializer attribute.� �
mutable struct GraphProto <: ProtoType

node :: Vector { NodeProto }
name :: AbstractString
initializer :: Vector { TensorProto }
doc_string :: AbstractString
input :: Vector { ValueInfoProto }
output :: Vector { ValueInfoProto }
value_info :: Vector { ValueInfoProto }

end # mutable struct GraphProto� �
3.4 TensorProto
This is the main structure that holds the raw model parameters.
For example, in comvolutional layers, the weights associated with
the kernel as available as dense vectors in the raw_data attribute.
During graph traversal, these weights are extracted and reshaped
according the shape that is available as a node attribute.� �
mutable struct TensorProto <: ProtoType

dims :: Vector { Int64 }
data_type :: Int32
segment :: TensorProto_Segment
float_data :: Vector { Float32 }
int32_data :: Vector { Int32 }
string_data :: Vector { Array { UInt8 ,1}}
int64_data :: Vector { Int64 }
name :: AbstractString
doc_string :: AbstractString
raw_data :: Array { UInt8 ,1}
double_data :: Vector { Float64 }
uint64_data :: Vector { UInt64 }

end # mutable struct TensorProto� �
This is most of the information needed to build the model. In the
next section, we discuss how we use DataFlow.jl to travel this graph
and extract model parameters and other relevant information.

3.5 Graph operations via DataFlow.jl
Once we have the entire model data present as a ModelProto ob-
ject, the next step is to travel the computation graph and capture all
the operation being done in the graph while mapping those simul-
taneously to the corresponding Flux operators.

DataFlow.jl [16] is a code intermediate representation format, rep-
resenting Julia code as an expression graph. It provides functions
for graph re-structuring , even on cyclic graphs. Graphs can then
also be used to generate Julia expression. It can be efficiently
used to traverse our ModelProto.graph object. However, during this
traversal we want to map ONNX operators to Flux layers and func-
tions. In DataFlow.jl, this becomes equivalent to creating a new
vertex for the required operator and calling in with appropriate Flux
functions , which are inferred from the ONNX operator itself. As
an example, let’s consider the simple case of the BatchNorm op-
erator in ONNX. Relu is a commonly used activation function in
neural networks that can be expressed as :

relu(x) = max(x, 0)

It basically just turns negative neurons off (sets them to 0) and
bypasses positive neurons. The Relu operator in ONNX performs
the same operation on an entire vector elementwise. It takes in
a single parameter: The input vector and returns a single value:
the result of applying relu on the input. Using DataFlow.jl, this
operator is mapped as :

� �
ops [: Relu ] = function ( params , x)

vcall ( broadcast , : relu , x)
end� �
The definition of relu here is defined in Flux: Once the model is
written to an external model.jl file, we can include the file directly
after importing Flux and all definitions should be ready for use.
Other complex layers such as Convolution have more complicated
implementations, but the essence remains the same, to collect all
inputs and call them with the corresponding Flux function. Dur-
ing this process, model weights also computed and stored in a dic-
tionary, mapping layer name to the parameters. At the end of the
graph traversal, we have both the required values: the DataFlow
graph containing Flux layers and the model weights corresponding
to each of these layers. The DataFlow graph can converted to Julia
code using DataFlow.syntax that also assigns variable names as and
when needed. This Julia code is then written to an external model.jl
file. For saving the weights, we use the BSON.jl package. BSON
stands for Binary JSON, a binary encoded serialization of JSON
objects. BSON.jl [14] can be used to store and load such structures,
our dictionary containing the model weights being one of them.

3.6 Interface and Design:
At a top level, ONNX.jl provides a minimal interface for the user;
it is just a tool for loading ONNX format models. Once the model
and weight file has been successfully generated, ONNX.jl provides
no further functionality. Users can then treat the resultant model as
any other Flux model.� �
using ONNX , Flux
ONNX . load_model (" path_to_onnx_file ")
weights = ONNX . load_weights (" weights . bson ")
model = include (" model . jl ")� �
ONNX.load_model here generates the required model and weights
file. Internally, it carries out all the above mentioned graph opera-
tions. model above can be treated as any other Flux model.
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The significant advantage the ONNX.jl provides is that is treats a
compiler problem as a graph problem. It generates the Flux code
for the model, which makes it very easy and intuitive to use the
same model for further applications, such as fine-tuning or even
replacing existing layers for some other use case. This is ideal in
the case of applications such as neural style transfer, where it is
very common to use a pre-trained network and modify it a bit as
a starting point. The generated code can also be helpful for finer
debugging of the model.
Overall, the entire process from the ONNX serialized file to gener-
ation of model and weight file can be summarized as:

Fig. 1: Flow diagram of ONNX.jl

Additionally, ONNX.jl also provides helper functions for inspect-
ing the model before loading it. ONNX.layers reads an ONNX file
and returns a list of all the layers in the model. With the growing in-
terest around more complicated and deep models, it is possible that
an ONNX model might have layers that Flux itself doesn’t support.
For handling these, ONNX.jl leaves a hook for the users to im-
plement additional functionality. A hook is a function that doesn’t
have an existing implementation: one would have to write an im-
plementation for it themselves. However any operator that also has
a corresponding implementation in Flux is completely recognized
by ONNX.jl at the moment.

4. Usage Scenarios
The ONNX format and ONNX.jl can be used for transfer learn-
ing in Flux, where we store knowledge while training a model and
use this knowledge for some other task. The idea is that rather than
random initialization of parameters for training a neural network,
it’s better to take an already trained model, since it leads to faster
convergence. In transfer learning, we take a pretrained model and
train it on another dataset, which might also have a different class

distribution. Fine tuning is an approach to transfer learning where
we train on a subset of training data with a smaller learning rate.
Transfer learning learning has shown tremendous results in im-
age classification, object detection, simulations, sentiment and NLP
based classification in recent past. This is also pretty common when
talking about tasks such as neural style transfer where we want to
change the style of an image in accordance with the style of an-
other image. Generative Adversarial Networks (GANs) have shown
to deliver high quality results when trained on top of a pre-trained
model. StyleGAN [21] , for example, can use a pre-trained model
to train a custom model to deliver high quality super-resolution re-
sults.

5. Related Work
In recent times several projects have come up that solve similar
issue. One of the most notable project is TensorFlow’s mlir (Multi-
Level Intermediate Representation) [24] . mlir is an evolution of
LLVM [23] that defines a common Intermediate Representation
(IR) format, which can be used to represent any DataFlow graph.
This common format unifies machine learning models in Tensor-
Flow or other frameworks. Other noteworthy approaches in this
direction are PFA and NNVM. PFA [27] or Portable Format for
Analytics is a common language that aims as easing the transi-
tion from development to production. It can be expressed within
the common JSON format and has functionalities such as control
structures, loops and user-defined functions.
NNVM[25] is an end-to-end compiler for AI frameworks. It aims
at solving the challenges posed by using different diverse machine
learning frameworks. It consist if two major components: NNVM
(Neural Network Virtual Machine) and TVM (Tensor Virtual Ma-
chine) [6] . NNVM defines a common computational graph inter-
mediate representation format and TVM implements the operators
used in these computation graphs while optimizing them for the
backend hardware.

6. Future Work
As ONNX.jl becomes the beginning point for various researchers
interested in using Julia for their research, it is important to note
that it also has certain shortcomings. The most significant is that
a model can’t be completely loaded unless there’s an equivalent
implementation of the operator in Flux.jl. An example of this
is Grouped Convolutions. These variants of Convolutional layers
were used in AlexNet [22] and showed amazing results. However,
since Flux doesn’t support these at the moment, the users will need
to have an implementation ready if they choose to import an ONNX
model with this particular layer into Flux using ONNX.jl. On the
plus side, a lot of the most commonly used layers are available in
Flux and can be readily used. Another thing to note is that to run
ONNX.jl generated code in some other hardware, one might need
to do a little restructuring. The model should work directly on the
CPU.
Another challenge moving forward is that we need to constantly
update ONNX.jl to support Flux’s latest API changes. This also
applies for the other way round: As ONNX operators are updated,
we would have to update these corresponding implementations in
ONNX.jl to support the newer models using these updated specifi-
cations. Over the long run, we’d need to constantly keep an eye out
for such changes and adapt ONNX.jl to those. Moreover, there are
subtle differences in the way Flux implements operators as com-
pared to other frameworks. As an example, consider the simple
AveragePool layer. The way Flux implements this is by padding
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the input tensor appropriately and then performing the pooling op-
eration. However, Keras-tensorflow does this by pooling and then
padding. This leads to subtle changes along the edges of the tensor
in the output. Such differences occur due to the way most frame-
works deal with such layers, and the only way to avoid this is to
check for such discrepancies.
In recent past, DataFlow.jl has been superseded by another interme-
diate representation format tool: IRTools.jl. It provides the ability
to work with both lowered and typed Julia code and can be used
together with metaprogramming tools such as Cassette.jl.
There has also been some talk about splitting ONNX.jl into two
packages: The first one would do the code generation and DataFlow
related functions while the other would be solely responsible for
implementation of the ONNX operators. This would be greater
control and ease while implementing layers or debugging a loaded
model. This should also make implementation pretty straight-
forward wherever missing. For the moment, all this continues to
be done by a single package.

7. Conclusion
Developing ONNX.jl has been tremendous learning experience.
From studying about Intermediate Representation formats for deep
learning models with millions of parameters to loading them in
just a couple of lines of code, ONNX.jl has made it very easy and
straight-forward to use a high quality trained model as a starting
point for many projects. Once such example I’d like to point out is
DenseNet-121 model. This is deep convolutional network that has
multiple Convolutional, Dense and Pooling blocks. Naturally, im-
plementing this in any framework is going to be a challenging task.
However, thanks to ONNX, we can now use an earlier implementa-
tion to import this model into any other framework. Importing this
model (train in Caffe2) via ONNX.jl into Flux can be done in 3
lines of code.
I was also able to load several large computer vision models loaded
from ONNX format at the time of actively developing the package.
Most of these have been added to FluxML/Metalhead.jl for a direct
plug-and-play use. These included:

—SqueezeNet [10]
—DenseNet 121 [9]
—ResNet 50 [8]
—GoogleNet [28]

ONNX.jl serves as a entry point for people looking to use Flux for
their research, but want quick results. It combines the power of the
Julia language, the elegance of Flux and the availability of a vast
number of pre-trained models. This enables researchers to spend
time focusing on the real issues, rather than model portability.
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