TSML (Time Series Machine Learning)

Paulito Palmes1, Joern Ploennigs1, and Niall Brady1

1IBM Dublin Research Lab

ABSTRACT
Over the past years, the industrial sector has seen many innovations brought about by automation. Inherent in this automation is the installation of sensor networks for status monitoring and data collection. One of the major challenges in these data-rich environments is how to extract and exploit information from these large volumes of data to detect anomalies, discover patterns to reduce downtimes and manufacturing errors, reduce energy usage, predict faults/failures, effective maintenance schedules, etc. To address these issues, we developed TSML. Its technology is based on using the pipeline of lightweight filters as building blocks to process huge amount of industrial time series data in parallel.

Keywords
Julia, Time Series, Machine Learning, Filters, Feature Extraction, Classification, Prediction, Aggregation, Imputation

1. Introduction
TSML[3] is a Julia[1] package for time series data processing, classification, and prediction. It provides common API for ML (Machine Learning) libraries from Python’s Scikit-Learn, R’s Caret, and native Julia MLs for seamless integration of heterogeneous libraries to create complex ensembles for robust time series prediction, clustering, and classification. TSML has the following features:

- (1) data type clustering/classification for automatic data discovery
- (2) aggregation based on date/time interval
- (3) imputation based on symmetric Nearest Neighbors
- (4) statistical metrics for data quality assessment and classification input features
- (5) ML wrapper with more than 100+ libraries from caret, scikit-learn, and julia
- (6) date/value matrix conversion of 1-D time series using sliding windows to generate features for ML prediction
- (7) pipeline API for high-level description of the processing workflow
- (8) specific cleaning/normalization workflow based on data type
- (9) automatic selection of optimised ML model
- (10) automatic segmentation of time-series data into matrix form for ML training and prediction
- (11) extensible architecture using just two main interfaces: fit and transform
- (12) meta-ensembles for automatic feature and model selection
- (13) support for distributed/threaded computation for scalability and speed

The TSML package assumes a two-column input for any time series data composed of dates and values. The first part of the workflow aggregates values based on the specified date/time interval which minimizes occurrence of missing values and noise. The aggregated data is then left-joined to the complete sequence of dates in a specified date/time interval. Remaining missing values are replaced by the median/mean or user-defined aggregation function of the k-nearest neighbors (k-NN) where k is the symmetric distance from the location of missing value. This approach can be called several times until there are no more missing values. For prediction tasks, TSML extracts the date features and convert the value column into matrix form parameterized by the size and stride of the sliding window. The final part joins the date features and the value matrix to serve as input to the ML, with the output representing the values of the time periods to be predicted ahead of time.

TSML uses a pipeline which iteratively calls the fit! and transform! families of functions relying on multiple dispatch to dynamically select the correct algorithm from the steps outlined above. Machine learning functions in TSML are wrappers to the corresponding Scikit-Learn, Caret, and native Julia ML libraries. There are more than hundreds of classifiers and regression functions available using TSML’s common API.

2. TSML Workflow
All major data processing types in TSML are subtypes of the Transformer. There are two major types of transformers, namely: filters for data processing and learners for machine learning. Both transformers implement the fit! and transform! multi-dispatch functions. All filters are direct subtypes of the Transformer while all learners are subtypes of the TSLearner. The TSLearner is a direct subtype of the Transformer.

Filters are normally used for pre-processing tasks such as imputation, normalization, feature extraction, feature transformation, scaling, etc. Consequently, filters’ fit! and transform! functions expect one argument which represents an input data for feature extraction or transformation. Each data type must implement fit! and transform! although in some cases, only transform! operation is needed. For instance, square root or log filters do not require any initial computation of parameters to transform their inputs. On the other hand, feature transformations such as scaling, normalization, PCA, ICA, etc. require initial computation of certain parameters in their input before applying the transformation to new datasets. In these cases, initial computations of these parameters are performed by the fit! function while their applications to new datasets are done by the transform! function.
Learners, on the other hand, expect two arguments (input vs output) and require training cycle to optimize their parameters for optimal input-output mapping. The training part is handled by the `fit!` function while the prediction part is handled by the `transform!` function.

The TSML workflow borrows the idea of the Unix pipeline\[3,4\]. The Pipeline data type is also a subtype of the Transformer and expects two arguments: input and output. The main elements in a TSML pipeline are series of transformers with each performing one specific task and does it well. The series of filters are used to perform pre-processing of the input while a machine learner at the end of the pipeline is used to learn the input-output mapping. From the perspective of using the Pipeline where the last component is a machine learner, the `fit!` function is the training phase while the `transform!` function is the prediction or classification phase.

The `fit!` function in the Pipeline iteratively calls the `fit!` and `transform!` functions in a series of transformers. If the last transformer in the pipeline is a learner, the last transformed output from a series of filters will be used as input features for the `fit!` or training phase of the said learner.

During the prediction task, the `transform!` function in the Pipeline iteratively calls the `transform!` operations in each filter and learner. The transform operation is direct application of the functions in a series of transformers. If the last transformer in the pipeline during transform is a learner, it performs prediction or classification. Otherwise, the transform operation acts as a feature extractor if they are composed of filters only.

To illustrate, below describes the main steps in using the TSML. First, we create filters for csv reading, aggregation, imputation, and data quality assessment.

```julia
fsname = joinpath(dirname(pathof(TSML)), "../data/testdata.csv")
csvfilter = CSVDateValReader(Dict(:dateformat=>"dd/mm/yyyy HH:MM"))
valgater = DateValGater(Dict(:dateinterval=>Dates.Hour(1))))
stfier = Statifier(Dict(:processmissing=>true)))
```

We can then setup a pipeline containing these filters to process the csv data by aggregating the time series hourly and check the data quality using the Statifier filter (Fig. 1).

```julia
apipeline = Pipeline(Dict(:transformers=>[csvfilter, valgater, stfier])) fit!(apipeline) nystats = transform!(apipeline) @show nystats
```

A mentioned previously, the `fit!` and `transform!` in the pipeline iteratively calls the corresponding `fit!` and `transform!` within each filter. This common API relying on Julia’s multi-dispatch mechanism greatly simplifies the implementations, operations, and understanding of the entire workflow. In addition, extending TSML functionality is just a matter of creating a new data type filter and define its own `fit!` and `transform!` functions.

In the Statifier filter result, blocks of missing data is indicated by column names starting with b. Running the code indicates that there are plenty of missing data blocks. We can add the ValNmEr filter to perform k-nearest neighbour (k-NN) imputation and check the statistics (Fig. 2):

```julia
bpipeline = Pipeline(Dict(:transformers=>[csvfilter, valgater, valnmer, stfier]))
fit!(bpipeline) impressed = transform!(bpipeline)
@show impressed
```

The result in Fig. 2 indicates NaN for all missing data statistics column because the set of missing blocks count is now empty.

We can also visualise our time series data using the Plotter filter instead of the Statifier as shown in Fig 2. Looking closely, you will see discontinuities in the plot due to blocks of missing data.

```julia
pplpipeline = Pipeline(Dict(:interactive=>true))
fit!(pplpipeline)
```

Using the imputation pipeline described before, we can visualise the result by replacing the Statifier with the Plotter filter. Figure 3 shows the plot after imputation which gets rid of missing data.

The subsection discusses additional filters to handle monotonic data which are commonly employed in energy/water meter and footfall

2.1 Processing Monotonic Time Series

Fig. 1. Data Quality Statistics. Column names starting with 'b' refer to statistics of contiguous blocks of missing data.

Fig. 2. Statistics after Imputation. All statistics for blocks of missing data indicate NaN to indicate the stats of empty set. This implies that all missing blocks are imputed.

Fig. 3. Statistics after Imputation. All statistics for blocks of missing data indicate NaN to indicate the stats of empty set. This implies that all missing blocks are imputed.
sensors. In the former case, the time series type is strictly monotonically increasing while in the latter case, the monotonicity happens daily. We use the filter called Monotonicer which automatically detects these two types of monotonic sensors and apply the normalisation accordingly.

```python
mono = joinpath(dirname(pathof(TSML)), 
"../data/type_detection/monotonic.csv")
monocsv = CSVDateValReader(Dict(:filename => mono, 
:dateformat => "dd/mm/yyyy HH:MM"))
```

Let us plot in Fig. 5 the monotonic data with the usual workflow of aggregating and imputing the data first.

```python
monopipeline = Pipeline(Dict(
    :transformers => [monofilecsv, valgator, 
        valnner, plt])
fit!(monopipeline)
transform!(monopipeline)
```

Let us now normalise using Monotonicer and show the plot in Fig. 6.

```python
mononicer = Monotonicer(Dict())
monopipeline = Pipeline(Dict(
    :transformers => [monofilecsv, valgator, valnner, 
        mononicer, plt])
fit!(monopipeline)
transform!(monopipeline)
```

2.2 Processing Daily Monotonic Time Series

We follow similar workflow in the previous subsection to normalize daily monotonic time series. First, let us visualize the original data after aggregation and imputation (Fig. 8).

```python
daily = joinpath(dirname(pathof(TSML)), 
"../data/type_detection/dailymonotonic.csv")
dailycsv = CSVDateValReader(Dict(
    :filename => daily, 
    :dateformat => "dd/mm/yyyy HH:MM"))
dailynner = Pipeline(Dict(
    :transformers => [daily, 
        nner, plt])
fit!(dailynner)
transform!(dailynner)
```
Proceedings of JuliaCon
1(1), 2019

Fig. 7. Normalized Monotonic Time Series With Outlier Removal Filter

\[
\text{transformers} = [\text{dailymonoscsv, valgator}, \text{valnner, pltr})]
\]

\[
\text{fit!}(\text{dailymonopipeline})
\]

\[
\text{transform!}(\text{dailymonopipeline})
\]

Fig. 8. Daily Monotonic Time Series

Then, we reuse the Monotonicer filter in the previous subsection to normalise the data and plot (Fig. 9).

\[
\text{dailymonopipeline} = \text{Pipeline}(\text{Dict(})
\]

\[
\text{transformers} = [\text{dailymonoscsv, valgator}, \text{valnner, mononicer, pltr})]
\]

\[
\text{fit!}(\text{dailymonopipeline})
\]

\[
\text{transform!}(\text{dailymonopipeline})
\]

To remove outliers, we can reuse the Outliernicer filter in the previous subsection and plot the cleaned data (Fig. 10).

\[
\text{dailymonopipeline} = \text{Pipeline}(\text{Dict(})
\]

\[
\text{transformers} = [\text{dailymonoscsv, valgator, valnner, nononicer, pltr})]
\]

\[
\text{fit!}(\text{dailymonopipeline})
\]

\[
\text{transform!}(\text{dailymonopipeline})
\]

Fig. 9. Normalized Daily Monotonic Time Series

Fig. 10. Normalized Daily Monotonic Time Series with Outlier Detector

3. Time Series Classification

We can use the knowledge we learned in setting up the TSML pipeline containing filters and machine learners to build higher level operations to solve a specific industrial problem. One major problem which we consider relevant because it is a common issue in IOT (Internet of Things) is the time series classification. This problem is prevalent nowadays due to the increasing need to use many sensors to monitor status in different aspects of industrial operations and maintenance of cars, buildings, hospitals, supermarkets, homes, and cities.

Rapid deployment of these sensors result to many of them not properly labeled or classified. Time series classification is a significant first step for optimal prediction and anomaly detection. Identifying the correct sensor data types can help in the choice of what the most optimal prediction model to use for actuation or pre-emption to minimise wastage in resource utilisation. To successfully perform the latter operations, it is necessary to identify first the time series type so that appropriate model and cleaning routines can be selected for optimal model performance. The TSClassifier filter aims to address this problem and its usage is described below.

First, we setup the locations of files for training, testing, and saving the model. Next, we start the training phase by calling fit! which loads file in the training directory and learn the mapping between their statistic features extracted by Statifier with their types indicated by a substring in their filenames. Once the training is done,
the final model is saved in the model directory which will be used for testing accuracy and classifying new time series datasets.

The code below initialises the TSClassifier with the locations of the training, testing, and model repository. Training is carried out by the fit! function which extracts the stat features of the training data and save them as a dataframe to be processed by the RandomForest classifier. The trained model is saved in the model directory and used during testing.

```
trd irname = joinpath(dirname(pathof(TSML)), 
    ".\data\realdatatsetclassification\training")

tst dirname = joinpath(dirname(pathof(TSML)), 
    ".\data\realdatatsetclassification\testing")

model dirname = joinpath(dirname(pathof(TSML)), 
    ".\data\realdatatsetclassification\model")

tscl = TSClassifier(Dict( 
    :trd irname => trd irname, 
    :tst directory => tst dirname, 
    :modeldirectory => model dirname, 
    :num_trees => 75 
))

fit!(tscl)
predictions = transform!(tscl)
@show testingAccuracy(predictions)
```

Figure [11] shows: a) a snapshot of the output during training and testing which extracts the statistical features of the time series; and b) the testing performance of the classifier. The training and testing data are labeled based on their sensor type for easier validation.

4. Extending TSML with Scikit-Learn and Caret

In the latest TSML version (2.3.4 and above), we refactored the base TSML to only include pure Julia code implementations and moved the external libs and binary dependencies into the TSMLextra package. One major reason is to have a smaller code base so that it can be easily maintained and rapidly deployed in a dockerized solution for Kubernetes or IBM’s OpenShift cluster.

Moreover, smaller codes make static compilation fast for smaller docker image in cloud deployment.

There are cases where the main task of time series classification requires more complex ensemble model using hierarchy or tree structure where members are composed of heterogeneous ML learners derived from binaries in different languages. For illustration purposes, we will show how to ensemble ML libraries from Scikit-Learn and Caret using TSML meta-ensembles that support the fit! and transform! APIs.

4.1 Parallel TSML Using Distributed Workflow

We will use Julia’s built-in support for parallelism by using the Distributed standard library. We also let Julia detect the number of processors available and activate them using the following statements:

```
using Distributed
sprocs() == 1 && addprocs()
```

With several workers active, we use the @everywhere macro to load the necessary filters and transformers to all workers.

```
@everywhere using TSML
@everywhere using TSMLextra
@everywhere using DataFrames
@everywhere using Random
@everywhere using Statistics
@everywhere using StatsBase:,:iqr
@everywhere using StatsBase:,:mad
```

With all the necessary TSML functions loaded, we can now setup the different MLs starting with some learners from Caret and Scikit-Learn. The list is not exhaustive for demonstration purposes.

```
# Caret ML
@everywhere caret_svmlinear = 
    CaretLearner(Dict(:learner => "svmLinear"))
@everywhere caret_treebag = 
    CaretLearner(Dict(:learner => "treebag"))

# Scikit-Learn ML
@everywhere sk_knn = 
    SKLearner(Dict(:learner => "KNeighborsClassifier"))
@everywhere sk_gb = 
    SKLearner(Dict(:learner => "GradientBoostingClassifier", 
        :impl_args => Dict(:n_estimators => 10)))
@everywhere sk_eextratree = 
    SKLearner(Dict(:learner => "ExtraTreesClassifier", 
        :impl_args => Dict(:n_estimators => 10)))
@everywhere sk_rf = 
    SKLearner(Dict(:learner => "RandomForestClassifier", 
        :impl_args => Dict(:n_estimators => 10)))
```

Let us setup ML instances from a pure Julia implementation of learners and ensembles wrapped from the DecisionTree.jl package [7][8][9][6].

```
# Julia ML
@everywhere jrf = RandomForest()
@everywhere jpt = PrunedTree()
@everywhere jadb = Adaboost()
```
Julia Ensembles
@everywhere @jvotede = VoteEnsemble(Dict(learners => [jrf, jpt, sk_gb, sk_extratree, sk_rf]));
@everywhere @jbest_ens = BestLearner(Dict(learners => [jrf, jpt, sk_gb, sk_extratree, sk_rf]));
@everywhere @jstack_ens = StackEnsemble(Dict(learners => [jvote_ens, jstack_ens, jbest_ens, sk_rf, sk_gb]));

Next, we setup the pipeline for training and prediction.

@everywhere function predict(learner, data, train_ind, test_ind)
 features = convert(Matrix, data[:, 1:end-1])
 # Create pipeline
 pipeline = Pipeline(Dict(:transformers => [OneHotEncoder(), # nominal to bits
 Imputer(), # impute NA values
 StandardScaler()], # normalize
 :learner # Predicts labels on instances)
)
 # Train
 fit!(pipeline, features[train_ind, :], labels[train_ind])
 # Predict
 predictions = transform!(pipeline, features[test_ind, :])
 # Assess predictions
 result = score(label, labels[test_ind], predictions)
 return result
end

Finally, we setup the `parallelmodel` function to run different learners distributed to different workers running in parallel relying on Julia’s native support of parallelism. Take note that there are two parallelisms in the code. The first one is the distribution of task in different trials and the second one is the distribution of tasks among different models for each trial. It is interesting to note that with this relative compact function definition, the Julia language makes it easy to define a parallel task within another parallel task in a straightforward manner without any problem.

```julia
function parallelmodel(learners::Dict, data::DataFrame, trials=5)
    models = collect(keys(learners))
    ctable = Distributed(Qct(), data) # Split into training and test sets
    Random.seed!(34)
    (trnidx, tstidx) = holdout(size(data, 1), 0.20)
    acc = Distributed(vcat) for model in models
        res = predict(learner, data, trnidx, tstidx)
        println("trial ", i, ", 
        model, " => ", round(res))
        [model res] end
    end
    acc
end

df = ctable |> DataFrame
rename!(df, x=>:model, x=>:acc, x=>:trn)
gp = @by(df, :model) do x
    DataFrame(mean=mean(x.acc), std=std(x.acc), n=length(x.acc))
end

We benchmark the performance of the different machine learners by creating a dictionary of workers containing instances of learners from Caret, Scikit-Learn, and Julia libraries. We pass the dictionary of learners to the `parallelmodel` function for evaluation.

```julia
learners = Dict(:jvote_ens => jvote_ens, :jstack_ens => jstack_ens, :jbest_ens => jbest_ens, :jrf => jrf, :jpt => jpt, :sk_gb => sk_gb, :sk_extratree => sk_extratree, :sk_rf => sk_rf);

data_dir = joinpath("/data/benchmarks/", datadir)

n = length(x.acc))
end

sort!(gp, :acc, rev=true)
return gp
end

Fig. 12. Output During Training with Several Workers

<table>
<thead>
<tr>
<th>model</th>
<th>mean</th>
<th>std</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>Float64</td>
<td>Float64</td>
<td>Int64</td>
</tr>
<tr>
<td>1</td>
<td>91.6667</td>
<td>14.4338</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>83.3333</td>
<td>28.8675</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>83.3333</td>
<td>14.4338</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>75.0</td>
<td>0.0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>jrf</td>
<td>66.6667</td>
<td>38.1881</td>
</tr>
<tr>
<td>6</td>
<td>jpt</td>
<td>66.6667</td>
<td>38.1881</td>
</tr>
<tr>
<td>7</td>
<td>sk_gb</td>
<td>66.6667</td>
<td>14.4338</td>
</tr>
<tr>
<td>8</td>
<td>super_ens</td>
<td>66.6667</td>
<td>38.1881</td>
</tr>
<tr>
<td>9</td>
<td>sk_rf</td>
<td>66.6667</td>
<td>14.4338</td>
</tr>
<tr>
<td>10</td>
<td>jada</td>
<td>25.0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>sk_knn</td>
<td>66.6667</td>
<td>14.4338</td>
</tr>
<tr>
<td>12</td>
<td>stack_ens</td>
<td>10.6667</td>
<td>28.8675</td>
</tr>
</tbody>
</table>

Fig. 13. @distributed: Classification Performance in 3 Trials

The data used in the experiment are sample snapshots of the data in our building operations. For reproducibility, the data can be found in the juliacon2019-paper branch of TSML in Github: /data/benchmark/tsclassifier. There are four time series types,
The distributed library of Figures 12 and 13 show a snapshot of running workers exploiting the distributed library of Julia and the classification performance of each model, respectively. There are 8 workers running in parallel over 12 different machine learning classifiers.

From the results, ExtraTree from Scikit-Learn has the best performance with 91.67% accuracy followed by TreeBag and SVMLinear from Caret library with 83.33% accuracy for both. With this workflow, it becomes trivial to search for optimal model by running them in parallel relying on Julia to do the low-level tasks of scheduling and queueing as well as making sure that the dynamically available compute resources such as cpu cores and memory resources are fairly optimised.

4.2 Parallel TSML Using Threads Workflow

With Julia 1.3, lightweight multi-threading support in Julia becomes possible. We will be using the pure Julia-written ML models because installing external dependencies such as Caret MLs through RCall package has some issues with the alpha version of Julia 1.3 at this point in time. We will update this documentation and add more MLs once the issues are resolved.

The main difference in the workflow between Julia's distributed computation model compared to the threaded model is the presence of `@everywhere` macro in the former for each function defined to indicate that these function definitions shall be exported to all running workers. Since threaded processes share the same memory model with the Julia main process, there is no need for this macro. Instead, threading workflow requires the use of ResourceLock in the update of the global dataframe that accumulates the prediction performance of models running in their respective threads. In similar observation with the distributed framework, the `threadedmodel` function contains two parallelism: threads in different trials and threads among models in each trial. The function is surprisingly compact to implement threads within threads without issues and the main bottleneck happens only during the update operation of the global `table` dataframe.

```julia
function threadedmodel(learners::Dict, 
data::DataFrame; trials=5)
  random.seed!(3)
  models*collect(keys(learners))
  global table = DataFrame()
  @threads for i=1:trials
    # Split into training and test sets
    (train_ind, test_ind) = holdout(size(data, 1), 0.2)
    mtx = SpinLock()
    @threads for themodel in models
      res = predict(learners[themodel], data)
      printrs(res)
      thread = ThreadInfo()
      lock(mtx)
      global table = vcat(table, DataFrame(model=themodel, acc=res))
      unlock(mtx)
    end
    df = table |> DataFrame
    gp = by(df, :model, do x
      DataFrame(mean=mean(x.acc), 
                 std=std(x.acc), e=sort(x))
    end
  end
  sort!(gp, :mean, rev=true)
  return gp
end
```

Let us define a set of learners that are written in pure Julia for this thread experiment.

```julia
# Julia ML
jrf = RandomForest(Dict(:impl_args=> Dict(:num_trees=>600)))
jpt = PrunedTree()
jada = Adaboost(Dict(:impl_args=> Dict(:num_iterations=>20)))
## Julia Ensembles
jvote_en = VoteEnsemble(Dict(:learners=> [jrf, jpt, jada]))
jstack_en = StackEnsemble(Dict(:learners=> [jrf, jpt, jada]))
jbester = BestLearner(Dict(:learners=> [jrf, jpt, jada]))
```

Let us run in parallel the different models using the same dataset with that of the distributed workflow.

```julia
using Base.Threads
learners Dict(
  [:jvote_en] => jvote_en,
  [:jstack_en] => jstack_en,
  [:jbester] => jbester,
  [:jada] => jada,
  [:supervisor] => supervisor,
)
datadir = joinpath("tsdata/"
) tdata = extract_features_from_timeseries(datadir)
restr = threadedmodel(learners, tdata; trials=10)
jvote_en => 75.0, thread=8
jvote_en => 100.0, thread=7
jbester => 75.0, thread=1
jbester => 50.0, thread=5
jada => 50.0, thread=2
jbester => 100.0, thread=6
jbester => 75.0, thread=8
jbester => 75.0, thread=4
jada => 100.0, thread=5
jada => 100.0, thread=1
jada => 50.0, thread=7
```

Fig. 14. Output During Training Using Several Threads

Figures 14 and 15 show example snapshot of the running threads and the final result of classification, respectively. In this experiment, Adaboost has 85.0% accuracy followed by Random Forest with 82.5% accuracy.
5. Applications Using Public IoT Datasets

This section summarizes the results of applying the TSML workflow for classification tasks using data in this site: http://www.timeseriesclassification.com/. Among the hundreds of datasets available, we handpicked only 4 datasets, namely: ElectricDevices, RefrigerationDevices, FordB, and Earthquakes.

ElectricDevices dataset covers 251 households, sampled in 2-minute intervals over a month. The target is to collect how consumers use electricity within the home based on the devices they use at a particular time of the day. The dataset is highly imbalanced with the following total count in each class, respectively: 1394, 4187, 1606, 2639, 4275, 1252, 1284. This dataset is a good test on the robustness of the classifier to handle bias during training. The class distribution in training is consist of: 727, 2231, 851, 1471, 2406, 509, 728. For testing, the class distribution is: 667, 1956, 727, 851, 1471, 755, 1165, 1869, 743, 556. Using this highly imbalanced dataset is a good way to determine which among the classifiers has the best method to deal with this sampling bias. There are 96 input features and 6 output classes in a total of 16637 samples.

RefrigerationDevices dataset is based on similar study with that of ElectricalDevices dataset. The dataset uses the same set of household and sampling protocol for gathering electric consumption data from three types of refrigeration devices: Fridge/Freezer, Refrigerator, Upright Freezer. Unlike in ElectricDevices, the class distribution in RefrigerationDevices are balanced, i.e., 250 for each class in training and 125 for each class during testing. There are 720 input features and 3 output classes in a total of 750 samples.

The Earthquakes classification problem requires predicting whether a major event is about to occur based on the most recent readings in the surrounding area. The data is aggregated hourly with the Rictor scale reading over 5 indicating a major event. There are 368 negative cases versus 93 positive cases of major events. This dataset is highly imbalanced in class distribution which makes predicting whether a major event occurs very problematic. The training set is composed of 264 negative examples and only 58 positive examples. The testing data is composed of 104 negative cases and only 35 positive cases. There are 512 input features and 2 output classes in a total of 4446 samples.

Table 1 summarizes the differences and similarities among the different classification problems under consideration. Two of the problems have highly imbalanced dataset, namely: Electric Devices and Earthquakes. Both FordB and Refrigeration Devices have no or slightly less imbalanced data.

One thing to note is that the Refrigeration dataset has almost the same number of features with its total number of samples. We expect that this will result into a much harder classification problem even though it does not suffer from imbalanced class distribution. Ideally, there must be more samples than features in order for the classifier to properly extract the correct subset of features for robust classification.

5.1 Results

Due to the data imbalance, the typical accuracy measurement will not be able to capture the performance of the algorithms because its value may be overshadowed by the dominant class. In this regard, we use F-score to measure the performance of a given classifier to each of its classes and get the mean of these F-scores.

Table 2 shows the top 5 performing classifiers together with the 2 worst performing classifiers. The first letter of each classifier’s name indicates whether the classifier comes from (c)aret, (s)cikitLearn, or (j)ulia. The table indicates that Random Forest and TreeBag from Caret performed the best followed by ExtraTree of ScikitLearn. Julia’s Vote ensemble and Random Forest complete the top 5. On the other hand, Julia’s AdaBoost and Caret’s RPart are the worst classifiers for this problem.

Using similar naming convention, Table 3 indicates that GradientBoost from ScikitLearn and Random Forest from Caret are the best classifiers for the Refrigeration Devices problem. The two worst algorithms are the same as in Table 2.

Table 1. Classification Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Classes</th>
<th>Imbalance</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Devices</td>
<td>6</td>
<td>Y</td>
<td>16637 x 96</td>
</tr>
<tr>
<td>Refrigeration Devices</td>
<td>3</td>
<td>N</td>
<td>750 x 720</td>
</tr>
<tr>
<td>Earthquakes</td>
<td>2</td>
<td>Y</td>
<td>461 x 512</td>
</tr>
<tr>
<td>FordB</td>
<td>2</td>
<td>N</td>
<td>4446 x 500</td>
</tr>
</tbody>
</table>

Table 2. Electric Devices

<table>
<thead>
<tr>
<th>Model</th>
<th>MeanFscore</th>
<th>Std</th>
<th>Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-rf</td>
<td>0.56</td>
<td>0.00</td>
<td>10</td>
</tr>
<tr>
<td>c-treebag</td>
<td>0.54</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>s-extraTree</td>
<td>0.52</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>j-vote</td>
<td>0.51</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>j-rf</td>
<td>0.51</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 3. Refrigeration Devices

<table>
<thead>
<tr>
<th>Model</th>
<th>MeanFscore</th>
<th>Std</th>
<th>Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-gb</td>
<td>0.51</td>
<td>0.00</td>
<td>10</td>
</tr>
<tr>
<td>c-rf</td>
<td>0.51</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>c-treebag</td>
<td>0.50</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>j-super</td>
<td>0.50</td>
<td>0.02</td>
<td>10</td>
</tr>
<tr>
<td>s-rf</td>
<td>0.48</td>
<td>0.03</td>
<td>10</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
For Earthquakes classification problem (Table 4), the top 3 best classifiers are dominated by those from Caret library, namely: TreeBag, Random Forest, and RPart. The worst performers are from Caret’s SVMLinear and Julia’s PartitionTree.

For the FordB dataset (Table 5), the best performers are: Random Forest from Caret, k-NN from ScikitLearn, and Vote Ensemble from Julia. The worst performers are similar to Tables 2 and 3.

5.2 Discussion

Comparing the performances of different classifiers among the four problems indicate that the most difficult problem to classify is the Refrigeration Devices while the easiest one is the Earthquakes problem. As we expected, there is no enough sample for the classifiers to learn the mapping in Refrigeration dataset relative to its feature dimension. One way to alleviate this problem is to remove features that are highly correlated or perform PCA to reduce the feature dimension. This is beyond the scope of the current paper which focuses mainly on the applicability of TSML MLs to different set of problems.

Among the classifiers, the Random Forest from Caret is the top performer in all problems. On the other hand, TreeBag from Caret and Gradient Boosting from ScikitLearn are the top performers in Refrigeration Devices and Earthquakes, respectively. It is interesting to note that among the Random Forest implementations, the top performer is the Caret’s version written by Breiman[2] who was the original author of the said algorithm in Fortran. The superior performance of Breiman’s Random Forest can be highlighted in the FordB classification performance. kNN, the next best classifier performs almost same performance with Breiman’s Random Forest. In all other cases, the next best performer has almost same performance with Breiman’s Random Forest.

As we expected based on past studies, the different ensemble models dominated the top 5 performers. While not shown in the table, the most consistent worst performer is the Caret’s RPart. This is consistent to Breiman’s observation that Random Forest performs well by using unstable or inferior ML models in its leaves. In Caret’s Random Forest, the leaves are composed of RPart models which has the poorest performance in all problems. The combination of boosting and bagging weak learners such as RPart make the Random Forest robust from datasets imbalances.

6. Summary and Conclusion

Packages for time series analysis are becoming important tools with the rapid proliferation of sensor data brought about by IoT. We created TSML as a time series machine learning framework which can easily be extended to handle large volume of time series data. TSML exploits the following Julia features: multiple dispatch, type inference, custom data types and abstraction, and parallel computations.

TSML main strength is the adoption of UNIX pipeline architecture containing filters and machine learners to perform both preprocessing and modeling tasks. In addition, TSML uses a common machine learning API for both internal and external ML libraries, distributed and threaded support for modeling, and a growing collection of filters for preprocessing, classification, clustering, and prediction.

Extending TSML can easily be done by creating a custom data type filter and defining its corresponding fit! and transform! operations which the TSML pipeline iteratively calls for each transformer in the workflow.

7. References